STATS 314A: Advanced Statistical Theory
The Sum-of-Squares Algorithmic Paradigm in Statistics

Lecture 8

April 25, 2022
Instructor: Tselil Schramm

Lecture 8: Robust Linear Regression

In this lecture we’ll apply the sum-of-squares paradigm to the problem of linear regression with ad-
versarial corruptions. We’ll depart slightly from previous lectures and work in a setting where the data is
not necessarily well-modeled as a linear regression, so there is no parameter that we are trying to identify.
Rather than giving an SoS proof of identifiability, we’ll show (using an SoS proof) that the if D;, D, are
two distributions which are close in total variation distance, then the fit of a linear function for D; can be
bounded by the fit of the linear function for D, (so long as D; is hypercontractive).

These notes have not been reviewed with the same scrutiny applied to formal publications. There may be errors.

1 Robust Linear Regression

In linear regression, we have sample access to a distribution D over pairs (x, y) € R? x R, where x are the
covariates and y are the labels, and our goal is to find the best linear function which relates the covariates
and labels. The way we measure fit can vary, but in this lecture we’ll consider the squared loss. For a linear
function defined by 0 € R?, we define the squared loss error,

errp(@) = E ((0,x) —y)’,
p(0) c7) (6, x) - y)
and we define the minimum error achievable on D,

err(D) = arg min errp(0).
OeR¢
Here, we won’t make the assumption that the data is generated by a linear model (which is referred to as
the realizable setting). We are just looking for the best-fit linear function.

The non-robust setting. In the non-robust setting, we are given a dataset of pairs {(x1, y1), ..., (3, yn)} C
R¢ x R sampled from D. Let D be the uniform distribution over these samples. There is a simple linear-
algebraic closed form for the best-fit line for this set of samples. Letting X be the d x n matrix whose ith
row is given by x;, and y € R" be the vector whose ith entry is y;,

R 1
0 =argmin E ((x,0) — y)* = argmin - X0 — yJ* = (X ' X)X y.
geR?  (x.y)~D N C

The idea is then to ensure that we have enough samples n so that 0 generalizes; that is, that it achieves
an error on the “population® data from D, errp(0), which is not too far from the error on the sample,
err(D) = errﬁ(é). For the purposes of this lecture, we will completely ignore t}}is aspect of generaliza-
tion/concentration; we’ll assume that any linear function with bounded error on D has a similar bound on
the error in D, and instead, we will be concerned with handling adversarial corruptions to D.



The strong contamination model. Here, we’ll be interested in the following setting: the points (xy, y1),
<o s (X, yu) are first sampled from D. Then, an adversary makes arbitrary corruptions to an ¢ fraction of
points, so that we observe (x7,y;), ..., (x/,v;), and our only promise is that for a subset I C [n] of size
Il = (1 —¢)n, eachi € I has x{ = x; and y{ = y;. Our goal is, given access only to this corrupted sample set,
to find some 6 € R? which makes errp(0) as small as possible. Ideally, we would like that the fit not be too
much worse than in the uncorrupted setting, matching the uncorrupted setting closely when the fraction
of corruptions ¢ is small:

errp(0) < (1+ f(e))err(D),
where f : R — R is such that lim,_,¢ f(¢) = 0.

2 Relating error for distributions close in total variation

Here, we will show that if we have two distributions which are close in total variation distance, and if at
least one of the two distribution satisfies a hyperccontractivity condition, then any linear function achieves
similar error on both. The condition we will need is the following:

Definition 2.1. Let k be an even integer. We say a distribution D over R? is (k, C)-hypercontractive if
for allv € RY,
E [(0,X)]<C/*- E [ X)22
E w0 <A B 10,07

This is similar to the subgaussianity condition we saw in Lecture 4.

Lemma 2.2. Suppose D,, D, are distributions over R? x R which satisfy drv(D1, D) < ¢, and suppose D
is (k, Cy)-hypercontractive for k an even positive integer." Then for any 0y,0, € RY,

errp,(02) < (1 + O(Cre! %)) - errp,(0;) + O(Cre'2/%) - errp, (61).

Before we prove this lemma, a word or two about its intended use. Suppose we are in a setting where
D is k-hypercontractive. We have access only to the corrupted distribution D', but we can try to find
a distribution D, which minimizes err(D;) subject to dTV(ﬁ’ ,Dy) < &, which implies by the triangle
inequality dw(ﬁ, D,) < 2¢. Because D, minimizes err(D;) subject to dTv(ﬁ’ ,D3) < ¢, in particular
err(D;) < err(ﬁ). We could then take 0, = arg min, errp,(6), and then, choosing 0; = arg min, err;(0),
we have from Lemma 2.2 that

err5(02) < (1+ O(Cre' 2%y - err(Dy) + O(Cre'=%/%) - errp(01) < (1+ O(Cre'~2/%Y) - err(D)

so that 6, matches the optimal error within a factor of (1 + f(¢)) for f going to zero with epsilon; the
stronger the hypercontractive property of D, the faster f goes to zero with epsilon, and the better our
approximation. Later, our strategy will be to prove a sum-of-squares version of this lemma and then use a
degree-O(k) sum-of-squares to find a pseudodistribution with the desired properties of D;.

Notice that, perhaps surprisingly, we did not require D; to be hypercontractive.

'If we make the weaker requirement that only the marginal of D, on the covariates x is hypercontractive, a weaker version of
this lemma, with a second error term, is true. In some contexts it is important to let the marginal on y not satisfy hypercontractivity.
Here we’ll make this more stringent assumption for clarity of exposition; we’ll comment in the proof where it could be relaxed.



Proof of Lemma 2.2. We’ll sample (x,y) ~ D; and (a,b) ~ D, according to the total variation coupling
between the distributions, so that (x, y) = (a, b) with probability 1 — ¢. Then by definition,

0,)= E ((65,x)—y)?
errp, (62) . )ND«Z’C) ¥)

= E [1,- 0, x)—y)?¢+ E [1 05, x) — y)?
o [ (@b)=x) (02, %) = )] o, [1abyen (B2, %) = )]
(a ) (a,b)~D,

= E [10- 0,,a)—b)?l+ E [1 0,5, x) — y)?
(ey)-Dy [ (ab)=(xy){02, @) — b)’] oD, [1(ap)ce) (02, ) — )]
(a b) Dz (a,b)~D2

[(02,0) = b)*] + E _ [Laapyecey {62, x) — y)*]
(xy)~ 1 x,y)~Dy
(a,b)~D, (ll b)~D,
=errp,(0:)+ E 1amexn ({02, x) — )*],
D,(02) oD, [1(ap)2ey) {02, x) = y)°]
(a,b)~D,

where in the first step we used that the sum of the indicators is 1, in the second step we used that (a,b) =
(x,) in the first term, in the third step we were able to drop the indicator because ({9, a) — b)? is a square,
and finally we applied the definition of the error.

Now we’ll bound this second term in which we have the (a,b) # (x, y). We’ll use Holder’s inequality
to separate the event over a, b from the term involving x, y Holder’s inequality states that for any p,q > 1
with % + é =1,{u,v) < |ulplvly. We'll apply it with p = =5 and g = 5

1-2/k 2/k

B [1apetn(02x) - p)] <| B [1]&1/57];;231)] [(02. ) = )]

(x,y)~D, (x.y)~Dy (x, y)~
(a,b)~D2 (a,b)~D2 (a b) Dz
1-2/k
2/k
= 1 E  [(62x)— )
ool p, [Hapeten] <<x,y)~vl €62 x) =) ]>
(a b) Dz
2/k
<M E [0y -] ), (1)
(x,y)~Dy

where we have used that drv(D;, D;) < €. We now bound this last term. We add and subtract zero to get
that

(02, x) — ) = (82 — 01, x) + (01, x) — )* < 2571 ({02 — 01, )" + (01, x) — »)F)

where we've used the SoS inequality (a + b)* < 2871(a* + b¥) from a previous lecture.

Now it is time to use the k-hypercontractivity of D;. Note that the first term, (8, — 61, x)* only involves
x, while the second term involves y too. If we only were to assume that the marginal of D; on x is
hypercontractive, then we could just leave this term, and get an additive error of (2¢)1-2/k Ep, [((01,x) —
1)1%/%. In some cases, we would want to allow for only this marginal distribution to be hypercontractive.
Here, for a simpler exposition, we have assumed D; is hypercontractive on all coordinates, so

k/2
E[(61,%) - )1 < ¢* EL(01.%) = )1 = (- err, (0) 7"
Applying the k-hypercontractivity of D; to the first term as well,

0, — 01,01 < C* B [(6, - 01,x)*]/?
ol D1[<2 1LX)"] (x,y)~D1[<2 1x)%]



and again adding and subtracting y, then applying (a + b)* < 2a* + 2b,

= [((B2, x) — y) — (B, x) — y))*]/2

<2 B [2((00x) — ) + (B1, %) — y))
(x,y)~D1

= (2C¢ - (exrp,(6,) + errp,(6,)))

E
(x,y)~D,

k/2

Plugging this back in to (1),

2/k
(1) < (25)172/]“ ((Ck . eerl(Ql))k/2 + (ZC;c -errp,(61) + 2C - eerl(Qz))k/2>

2/k
< (20)1 2k ((ck cerrp, (01))% + (26 - errp, (8)) + 2Ci - errp, (62))" 2)

< (25)172/ka (3eer1 (61) + 2errp, (92)) )
Putting everything together,

errp,(02) < errp,(0;) + 3(26)1_2/k6‘kerrp1 (0) + 2Ck(2£)1_1/2kerr1)1 (62)
(1 — 2C(2¢)17/%).. errp,(02) < errp,(0;) + 3(2@3)1_2/]‘Ckerrp1 (61)

and dividing through by 1 — 2C;(2¢)'~?/¥ finishes the proof, since 1/(1—38) = 1+ O(5) when § is small. [

3 Sum-of-squares algorithm for robust regression

As discussed above, if we could minimize err(D;) over distributions D, which satisfy drv(Dx, D’ ) < &,
Lemma 2.2 guarantees that the minimizing 6, = arg min, errp,(#) would have bounded error for D. We
turn to the sum-of-squares paradigm to replace this optimization over distributions to optimization over
pseudodistributions. We take the following polynomial optimization probelm over variables wy, ..., w, € R
where w; represents the indicator that (x/,y/) is in the support of Dy, ay,...,a, € R? and by,...,b, € R
representing the points in the support of Dy, and 6 € R? the linear regression coefficients:

. k/2
min (rll ;«ai, 0) — b,~)2>

subject to

w? = w; Vi € [n]
wi(a; — x/) = 0 Vi € [n]
wi(b; — y{) = 0 Vi € [n]

z”: w; = (1 —&)n.
i=1

We can then think of D, be the uniform distribution over the a;, b;. Our objective is min eerZ(Q)k/ 2 rather
than min errp, (€)]; this is because we will ultimately need to work with the k/2th power in our sum-of-
squares proof of Lemma 2.2.

Getting a SoS proof of Lemma 2.2 will require two ingredients: the first is an SoS version of Holder’s
inequality. The second is an SoS version of hypercontractivity. We will say a distribution D is degree-t



SoS-certifiably (C, k)-hypercontractive if there is a degree-t proof that Ex_p[(X, v)¥] < Cllz/z E[(X,v)?]¥/2.
Recall for example that N'(0, 1) is degree-k certifiably (k, k)-hypercontractive, as is the uniform distribu-
tion over xi,...,x, ~ N(0,1) whenn = d®®); 3 more thorough account of the distributions which are
known to be certifiably hypercontractive can be found in [KS17].

Theorem 3.1. Let k > 2 be a power of 2. If Disa degree-t SoS-certifiably (Cy, k)-hypercontractive, then for
Ea degree-t pseudoexpectation optimizing the program above,

err5(E[0]) < (1 + O(Cre' /%)) - err(D).

Proof. The error achieved by E[0] can be bounded by

n

errﬁ(ﬁ[e]) = % Z ((E[G],xi) - y,-)z <E

i=1

= Elerr;(0)],

Y (6. - )

since E[ ]2 < E[ f2] by Cauchy-Schwarz. Hence it is enough to give a sum-of-squares proof that err5(0)
is bounded.

We'll prove an SoS version of Lemma 2.2. Let w/ = w; - 1[(x;, 1) = (x/, /)], we can verify that the w/
also satisfy the axioms w/ = (w/)?. Now, we use these w/ to simulate the “coupling” from the argument of
Lemma 2.2:

err5(0) = i~]E:n][(<0’ xiy — yi)°]
= i}fln][wf((g, xi) = yi)’] + i~]E:n][(1 — w0, %) = y)°]

= }E:n][Wil(xi,y,-):(x;,y;)«@, X[y — v+ i}E:n][(l — w0, x1) — yi)*]

i
and since we have the constraint w;x! = wia; and w;y! = w;y;,

= B W@ .a) =)+ B [(1=w)(0.x) = )]

i~

< iJE:n][((@s a;) — b))’ + i~E[:n][(1 - w0, %) — y)°l,

since w/ = (w])? and (0, a;) — b;)? are squares.
Now, we use the following sum-of-squares version of Holder’s inequality:

Claim 3.2. Let ¢ be a power of 2. Then for indeterminates u,...,u, and fi, ..., f,

() 5(52) (29)

Proof. We'll prove the stronger claim,

{u? = uikicn) Fog [(Z uiﬁ> < Z (Z “i) (Z ”ifit> } ’

by induction, from which the claim follows because the u; and fit are squares. For the base case, t = 2, the
statement follows by Cauchy-Schwarz and from the constraints u? = u;:

(1) -(501) =(54) (32) - (2) (5

5



Now, assume the statement holds for ¢, and we will prove it for 2t. By the induction hypothesis, there is a

degree-O(t) proof that
t t-1
(5 (29

Since both sides are non-negative, the inequality holds when we square both sides (which multiplies the
degree by 2). From this we have

(3 <(3) (0] -(3+) (340)
(2) ()(3er)-(52) (37)

where we have used the Booleanity constraints u? = u; and Cauchy-Scwarz, increasing the degree by O(1).
This concludes the proof. O

Applying this SoS-Hélder’s inequality to our expression with u; = (1 —w)),

k/2 (k-2)/2
(Bja-wom-n1) <(Ea-w) (2 @x-2)
< (26)k2/2 <~]E: ](<9, x;) — )’i)k>

since Y.; 1 —w/ < 2¢ by the fact that only en of the 1(x,)%(x/,y/) are nonzero, and because Yiwi=(1—¢)n.
Now, we can introduce the minimizer 6" = arg min, err;(0) as in the proof of Lemma 2.2,

= (B (0-0"x)+ 05 )
And using the SoS inequality (a + b)* < 2871(a* + b¥) for k a power of 2,
< @V (B 000" (0 )

The quantities E( — 0*, x;)* and E((8*, x;) — y;)* are bounded very much as in Lemma 2.2, except that we
must appeal to the SoS-certifiable hypercontractivity. Given this, we have

k/2 k/2
< (28)(](—2)/22](—16\]]5/2 (( E[':]<0 _ 9*,xi>2> + < E[: ](<0*,xi> _ yi)2> >

k/2
= @) PG <~~'E:n] (0.2 = ) + (s = 40", xi>>>2>

k/2
(2 @@ -0) )

k/2
< @o)* e (2 E(@x) =y +2 B (n— (0", x,~>>2)



k/2
(2 @ -n) )

= (25)(k72)/22k71C,]:/2 ((2 ~errp(0) + 2eerA(9*))k/2 + errb(Q*)k/z)
< (26)*7D/2K1C% (42 exrp (0)F2 + (1 + 4/2) - exrp(6)/7)
where in the last step we have again used that (a + b) < 2K1(a* + b¥) is a degree-k sum-of-squares
inequality. Putting all of this together, we have a degree-O(k) sum-of-squares proof that
(errﬁ(e) —errp, (19))k/2 < (325)(k_2)/2C,§/2 (errﬁ(e)k/2 + errﬁ(G*)k/z)
= O(Cpe'2/kyk/2.. (errl~)(0)k/2 + err(ﬁ)k/z)
where D, denotes the uniform distribution over the variables (a;, b;). Finally, we once again apply the

inequality (a+b)" < 2'(a'+b") on the right-hand side, this time with a+b = err;(6), a = err;,(0)—errp,(6),
b = errp,(#), and t = k/2 to obtain

< O(Crel~2/kyk/2 <2k/2 (eer~(0) —errp, (9))k/2 + Zk/zerrpz(e)k/2 + err(ﬁ)k/z) .

Re-arranging we have the degree-O(k) sum-of-squares inequality

k/2 O(Cyel=2/k)k/2 .
(erri)(Q) - eerz(H)) < = O(Cre 2/ (eerZ(Q)k/Z + err(D)k/Z)

= O(Cre' 2/kyk/2 (eer2 O)/% + err(ﬁ)k/z)

Applying the pseudoexpectation on both sides as well as the SoS version of Jensen’s inequality (El(a +
b)¥] > (E[a + b])¥ for k a power of 2), from this we get,

(Elerr5(0)] — Elerrp, (9)])” " < El(err(0)—errp, (0))/2] < O(Cre /572 (Blerrp,(0)/2] + exr(D)/?) .

Now, E[eerz(G)k/ 2] is the quantity we were minimizing, and in particular it is at most err(ﬁ)k/ 2 be-
cause D and 0" were feasible solutions to our polynomial optimization problem. Similarly, E[errpz(e)] <
E[errp,(0)/21%/F < err(6*) = err(D). Hence, we have that

err5(E[0]) < Elerr5(0)] < (1 + O(Cre' ™)) - err(D),

concluding the proof. O

4 Conclusion

Bibliographic remarks. This lecture is based on the work of Klivans, Kothari, and Meka, who gave
algorithms for robust linear regression with both mean squared loss and ¢; loss in [KKM18]. Also of interest
is the follow-up work of Bakshi and Prasad [BP21], who obtain optimal statistical rates for regression under
the stronger assumption that there is some negative correlation with the noise; their proof differs from the
above in that they exploit the condition that the minimizing 0* satisfies Vyerrp(6*) = 0. The condition of
SoS-certifiable hypercontractivity is studied extensively in [KS17].

Contact. Comments are welcome at tselil@stanford.edu.
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