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Lecture 6: Global correlation rounding

So far, in most of the examples we have seen, the “rounding” step, in which we take the pseudoexpec-
tation operator and use it to produce a solution, was trivial. However, this is not always the case, especially
in non-parametric settings where there is no parameter or “planted” solution that we are looking for. In
this lecture we’ll introduce a powerful and general technique called “global correlation rounding.” Some
bibliographic remarks will be deferred to the end.

These notes have not been reviewed with the same scrutiny applied to formal publications. There may be errors.

1 Rounding pseudoexpectations

In the applications we have seen so far (robust mean estimation, recovering communities in stochastic
blockmodels, clusteringmixtures of Gaussians), our goal was to recover some specific parameter or planted
structure; call this parameter 𝜃∗. We gave an SoS proof of strong identifiability for these parameters under
conditions which we encoded as polynomial constraints on variables 𝜃: the proof argues that the only
choice of 𝜃 which satisfies these constraints must be very close to 𝜃∗. From this we were able to argue that
𝜃∗ ≈ �̃�[𝜃], or sometimes that 𝜃∗ was an obvious function of �̃�[𝜃𝜃⊤].

In another type of application, we use SoS to solve a variational or optimization problem. In such ap-
plications, we have some variables 𝑋 , and we are interested in finding the choice of 𝑋 which maximizes
or minimizes some function, subject to constraints. We have already seen one example in which solving
a variational problem is helpful for inference: in stochastic block models with average degree Ω(log 𝑛),
we reduced the clustering/community recovery problem to finding a partition which minimized (or maxi-
mized) the number of edges cut. As another example, we could try to find only one blockmodel community
at a time, by considering the following variational problem:

Problem 1.1 (Densest-𝑚-subgraph). We are given a social network graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛. We’d
like to find a subset of 𝑚 of the nodes/people in the network which are most well-connected. We can
encode this problem with the following polynomial system:

max
𝑥

𝑋
⊤
𝐴𝐺𝑋, subject to 𝑋

2
𝑖 = 𝑋𝑖 ∀𝑖 ∈ [𝑛], ∑

𝑖

𝑋𝑖 = 𝑚.

In this problem, there may be several dense communities, and the maximizing 𝑋 may not be unique.
Even if we had access to an actual distribution 𝐷 over solutions to the program, via low-degree moments
𝐄𝑋 ∶ R[𝑋 ] → R, it is not clear how we might use it to find a maximizing 𝑋 . If we don’t know all of the
moments of 𝐷, how can we sample 𝑋 ∼ 𝐷, or even find one 𝑋 in the support of 𝐷?

Global correlation rounding is a technique which, under favorable conditions, can use a bounded-
degree moment operator to find some 𝑥 such that 𝑐(𝑥) ≈ 𝐄𝑋 [𝑐(𝑋 )], when 𝐷 is a distribution over 𝑋 taking
values in a finite alphabet. In this lecture, we’ll focus exclusively on the casewhen𝑋 ∈ {0, 1}𝑛. Furthermore,
the proof of global correlation rounding applies equally well to pseudodistributions, so we can apply it to
round SoS semidefinite relaxations to polynomial optimization problems.

In this lecture we will apply global correlation rounding to the densest subgraph problem; in a later
lecture we may see it applied to mean-field approximations in Ising models [JKR19].
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2 Independent rounding and local correlation

One way to produce a solution from (or “round”) a degree-⩾ 1moment operator 𝐄𝑋 satisfying the axioms
{𝑋 2

𝑖 = 𝑋𝑖}𝑖∈[𝑛] is using independent rounding:

Definition 2.1 (Independent rounding). Given access to a (pseudo)moment oracle 𝐄 of degree ⩾ 1 for
𝑋1,… , 𝑋𝑛 satisfying the axioms {𝑋 2

𝑖 = 𝑋𝑖}𝑖∈[𝑛], the independent rounding algorithm produces a solution
𝑌1,… , 𝑌𝑛 by sampling 𝑌𝑖 ∼ Ber(𝐄[𝑋𝑖]).

How good is the solution produced by independent rounding? If we care about the value of a linear
function of 𝑋 , then by linearity of expectation, 𝐄𝑌 [⟨𝑐, 𝑌 ⟩] = 𝐄𝑋 [⟨𝑐, 𝑋 ⟩], so at least for linear functions the
expected value is good. But in the densest-𝑚-subgraph problem, our objective function is quadratic. In
this case, our error is measured by the “local correlation:”

Definition 2.2 (Local correlation). For a graph𝐺 = (𝑉 , 𝐸)with adjacencymatrix𝐴𝐺 and a (pseudo)distribution
with (pseudo)moments 𝐄𝑋 , the local correlation is the quantity

loc(𝐄𝑋 , 𝐺) = 𝐄
(𝑖,𝑗)∼Unif(𝐸)

(𝐄𝑋 [𝑋𝑖𝑋𝑗 ] − 𝐄𝑋 [𝑋𝑖]𝐄𝑋 [𝑋𝑗 ]) .

In words, it is the average (pseudo)covariance across edges of 𝐺.

The local correlation precisely quantifies the error in the objective function𝑋⊤𝐴𝐺𝑋 under independent
rounding:

Claim 2.3. If 𝑌 ∈ {0, 1}𝑛 is produced from 𝐄𝑋 via independent rounding, then

1

2|𝐸(𝐺)|
(𝐄𝑋 [𝑋

⊤
𝐴𝐺𝑋 ] − 𝐄𝑌 [𝑌

⊤
𝐴𝐺𝑌 ]) = loc(𝐺,𝐄𝑋 ).

Proof. This follows from linearity, using that when 𝑖 ≠ 𝑗 , 𝐄𝑌 [𝑌𝑖𝑌𝑗 ] = 𝐄𝑌 [𝑌𝑖]𝐄𝑌 [𝑌𝑗 ] = 𝐄𝑋 [𝑋𝑖]𝐄𝑋 [𝑋𝑗 ], and for
the diagonal 𝑖 = 𝑗 terms, 𝐄𝑌 [𝑌 2𝑖 ] = 𝐄𝑌 [𝑌𝑖] = 𝐄𝑋 [𝑋𝑖] = 𝐄𝑋 [𝑋

2
𝑖 ].

Hence if we can guarantee that the local correlation is small, then we have a bound on the error of
independent rounding. Unfortunately, the local correlation of 𝐄𝑋 may be quite high. In what follows, we’ll
describe a general procedure for decreasing what is called the global correlation, and how in some cases
global and local correlation can be related.

3 Global correlation

A priori we have no control over the local correlation of 𝐄𝑋 . However, we can control a different quantity,
which we call the global correlation:

Definition 3.1 (Global correlation). For a (pseudo)distribution over 𝑋 ∈ R𝑛 with (pseudo)moments 𝐄𝑋 ,
the global correlation is the quantity

glob(𝐄𝑋 ) = 𝐄
𝑖,𝑗∼Unif([𝑛])

[(𝐄𝑋 [𝑋𝑖𝑋𝑗 ] − 𝐄𝑋 [𝑋𝑖]𝐄𝑋 [𝑋𝑗 ])
2
] .
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The global correlation measures the average covariance under 𝐷𝑋 among pairs of variables chosen
uniformly from [𝑛]. If loc(𝐺,𝐄𝑋 ) is close to zero, then we conclude that a randomly chosen pair of variables
is not too correlated on average. Notice that this is the square of the average covariance, whereas in
loc(𝐺,𝐄)we do not have the square. This discrepancy in the definitions is amatter of technical convenience.

To gain some intuition for why the global covariance could be large, consider the following situation:
think of the densest-(𝑛/𝑘)-subgraph problem, and suppose that 𝐺 comes from a 𝑘-community block model,
as defined in Lecture 3, in the case when the inside-community probability is larger than the outside-
community probability. If we take 𝐷𝑋 to be uniformly distributed over the communities, then

glob(𝐄𝑋 ) = (1 − 1
𝑘
) ⋅

(
0 −

1

𝑘2)

2

+ 1
𝑘
⋅
(

1

𝑘
−

1

𝑘2)

2

∼
1

𝑘3
,

which is non-negligible. The reason that these global correlations are occuring is that the distribution is
actually a mixture over simpler distributions (one for each community). However if we can re-weight the
distribution so that 𝑋 is supported only on one of the communities, then the average correlation between
variables drops (if 𝑋 is fixed on one community, then 𝑋𝑖 and 𝑋𝑗 are always independent).

The block model example above hints at the following fact: one can always reduce the global correla-
tion by conditioning. Before we see this, let’s see why local and global correlation may be related.

3.1 Relating local and global correlation

A priori, there is no reason for us to suspect that global and local correlation are related; neighboring
variables in 𝐺 may be much more correlated than uniformly chosen pairs of variables. However, we’ll
show that under certain structural assumptions, local and global correlation can be related.

Lemma 3.2. Suppose that 𝐺 is a 𝑑-regular graph,1 and suppose as well that its normalized adjacency matrix
1
𝑑
𝐴𝐺 has at most 𝑘 eigenvalues exceeding some threshold 𝜏 ∈ [1, 0]. Define 𝐕𝐚𝐫(𝐄𝑋 ) = 𝐄𝑖∼[𝑛] 𝐕𝐚𝐫(𝑋𝑖), where

the variance is taken with respect to 𝐷𝑋 . Then

loc(𝐄𝑋 , 𝐺) ⩽ (1 − 𝜏) ⋅
√
𝑘 ⋅ glob(𝐄𝑋 ) + 𝜏 ⋅ 𝐕𝐚𝐫(𝐄𝑋 )

A graph with at most 1 eigenvalue close to 1 is an expander, which roughly means that there are no
too-sparse cuts. Within an expander, it makes sense that large local correlation (and bounded average
variance) might imply some nontrivial global correlation, since the expansion means that all variables are
well-connected; this might offer some intuition for the case when 𝑘 = 1. For larger 𝑘, intuitively, a graph
with at most 𝑘 eigenvalues exceeding 𝜏 can be partitioned into 𝑓 (𝑘) subgraphs for some function 𝑓 , where
the partition does not cut too many edges, and where each piece is an expander inside; the lemma above
shows that the local-to-global phenomenon exists in such graphs as well, albeit the effect is weaker due to
the possible presence of sparse cuts.

Proof of Lemma 3.2. Let Σ𝑋 = 𝐄𝑋 [𝑋𝑋⊤] − 𝐄𝑋 [𝑋 ]𝐄𝑋 [𝑋
⊤] be the covariance matrix of 𝐷𝑋 . By definition,

loc(𝐄𝑋 , 𝐺) =
1

𝑑𝑛
⟨Σ𝑋 , 𝐴𝐺⟩ .

By virtue of being a covariance matrix, Σ𝑋 ⪰ 0. Since 1
𝑑
𝐴𝐺 is a normalized adjacency matrix, all of its

eigenvalues lie in [1,−1]. Writing Π as the projector to the span of the top 𝑘 eigenvalues of 1
𝑑
𝐴𝐺, we have

1This requirement can be relaxed, but we make it here for simplicity.
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by the positive-semidefiniteness of Σ𝑋 ,

loc(𝐄𝑋 , 𝐺) =
1

𝑛
⟨Σ𝑋 ,

1
𝑑
𝐴𝐺⟩ ⩽

1

𝑛
(⟨Σ𝑋 ,Π⟩ + 𝜏 ⋅ ⟨Σ𝑋 , 𝐼 − Π⟩)

=
1

𝑛
(1 − 𝜏) ⋅ ⟨Σ𝑋 ,Π⟩ +

𝜏

𝑛
⋅ Tr(Σ𝑋 )

And now applying Cauchy-Schwarz to the first term and noting that the second term is a scaling of
𝐕𝐚𝐫(𝐄𝑋 ),

⩽
1

𝑛
(1 − 𝜏) ⋅ ‖Σ𝑋 ‖𝐹 ⋅ ‖Π‖𝐹 + 𝜏 ⋅ 𝐕𝐚𝐫(𝐄𝑋 ).

But now by inspection, glob(𝐄𝑋 ) = (
1
𝑛
‖Σ𝑋 ‖𝐹)

2. Further, since Π is a projector to a dimension-𝑘 subspace,
‖Π‖𝐹 =

√
𝑘. Thus,

= (1 − 𝜏)
√
𝑘 ⋅ glob(𝐄𝑋 ) + 𝜏𝐕𝐚𝐫(𝐄𝑋 ),

which gives the result

3.2 Conditioning reduces global correlation

The reason that Lemma 3.2 is useful algorithmically is that, as we will see below, we can lower the global
correlation by conditioning.

Lemma 3.3. Let 𝑋1,… , 𝑋𝑛 be random variables taking values in {0, 1}. Suppose we sample 𝑖1,… , 𝑖𝓁 ∼

Unif([𝑛]), and then sequentially set

𝑥𝑖𝑡 ∼ Ber (𝐄[𝑋𝑖𝑡 ∣ 𝑋𝑖1 = 𝑥𝑖1 ,… , 𝑋𝑖𝑡−1 = 𝑥𝑖𝑡−1]) .

Then there exists some 𝑡 ⩽ 𝓁 such that

𝐄
𝑥𝑖1 ,…,𝑥𝑖𝑡

glob(𝐄[⋅ ∣ 𝑋𝑖1 = 𝑥𝑖1 ,… , 𝑋𝑖𝑡 = 𝑥𝑖𝑡 ]) ⩽
2 log 2

𝓁
.

What this lemma says is that conditioning lets us decompose our measure into a mixture of measures
that are “simpler,” in that they are closer to product measures. Of course, one can write any discrete
measure as a mixture over point masses (that is, by conditioning on the values of all of the variables), and
point masses are trivially product measures. The interesting thing here is that we can get close to a product
measure much before conditioning on everything, where we quantify the distance to a product measure
in terms of the global correlation. See also [Eld20] for a different take on decomposing measures.

Proof of Lemma 3.3. For a joint distribution 𝜇 on variables 𝑍1, 𝑍2, let 𝜇𝑖 denote the marginal on 𝑍𝑖, and
let 𝜇1 ⊗ 𝜇2 denote the product of 𝜇1 and 𝜇2. The proof makes elegant use of some information-theoretic
inequalities. In particular, we’ll exploit the relationship between covariance and mutual information:

Definition 3.4. If 𝑍1, 𝑍2 are jointly distributed random variables with joint distribution 𝜇, the mutual
information of 𝑍1, 𝑍2 is the quantity

𝐼 (𝑍1;𝑍2) = D(𝜇‖𝜇1 ⊗ 𝜇2) = 𝐄
𝑍1,𝑍2∼𝜇

log
𝐏𝐫𝜇[𝑍1, 𝑍2]]

𝐏𝐫𝜇1[𝑍1]𝐏𝐫𝜇2[𝑍2]
.
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Claim 3.5. If 𝑍1, 𝑍2 are random variables taking values in a set Σ ⊂ R with max𝑠∈Σ |𝑠| ⩽ 𝑀 ,

𝐂𝐨𝐯(𝑍1, 𝑍2)
2 ⩽ 2𝑀

4
⋅ 𝐼 (𝑍1;𝑍2).

Proof. The proof uses Pinsker’s inequality, which states that for measures 𝜋, 𝜈, dTV(𝜈, 𝜋) ⩽
√

1
2
D(𝜈‖𝜋). We

simply related the total variation distance and the covariance,

dTV(𝜇, 𝜇1 ⊗ 𝜇2) =
1

2
∑

𝑧1,𝑧2

|𝐏𝐫[𝑍1 = 𝑧1, 𝑍2 = 𝑧2] − 𝐏𝐫[𝑍1 = 𝑧1]𝐏𝐫[𝑍2 = 𝑧2]|

⩾
1

2
∑

𝑧1,𝑧2

|
|
|
|

𝑧1

𝑀

𝑧2

𝑀

|
|
|
|
|𝐏𝐫[𝑍1 = 𝑧1, 𝑍2 = 𝑧2] − 𝐏𝐫[𝑍1 = 𝑧1]𝐏𝐫[𝑍2 = 𝑧2]|

⩾
1

2𝑀2

|
|
|
|
|

∑

𝑧1,𝑧2

𝑧1𝑧2(𝐏𝐫[𝑍1 = 𝑧1, 𝑍2 = 𝑧2] − 𝐏𝐫[𝑍1 = 𝑧1]𝐏𝐫[𝑍2 = 𝑧2])

|
|
|
|
|

=
1

2𝑀2
|𝐂𝐨𝐯(𝑍1, 𝑍2)|,

where the first inequality uses that 𝑧𝑖 ⩽ 𝑀 and the second inequality is the triangle inequality. The
conclusion follows by applying Pinsker’s inequality to 𝜇 vs. 𝜇1 ⊗ 𝜇2.

We’ll use the entropy to bound the mutual information.

Definition 3.6. If 𝑍1, 𝑍2 are discrete random variables, the entropy of 𝑍1 is defined as the quantity

𝐻 (𝑍1) = 𝐄
𝑧1∼𝜇

log
1

𝐏𝐫[𝑍1 = 𝑧1]
,

and the entropy of 𝑍1 conditioned on 𝑍2 is the quantity:

𝐻 (𝑍1 ∣ 𝑍2) = 𝐄
𝑧2∼𝜇2

𝐻 (𝑍1 ∣ 𝑍2 = 𝑧2)

Claim 3.7. The mutual information may be related to the entropy as follows:

𝐼 (𝑍1;𝑍2) = 𝐻 (𝑍1) − 𝐻 (𝑍1 ∣ 𝑍2).

Proof. Using properties of the logarithm and our definitions, we have the chain of equalities,

𝐼 (𝑍1;𝑍2) = 𝐄
𝑧1,𝑧2∼𝜇

log
𝐏𝐫[𝑍1 = 𝑧1, 𝑍2 = 𝑧2]

𝐏𝐫[𝑍1 = 𝑧1]𝐏𝐫[𝑍2 = 𝑧2]

= 𝐄
𝑧1,𝑧2∼𝜇(

log
𝐏𝐫[𝑍1 = 𝑧1, 𝑍2 = 𝑧2]

𝐏𝐫[𝑍2 = 𝑧2]
+ log

1

𝐏𝐫[𝑍1 = 𝑧1])

= 𝐄
𝑧1,𝑧2∼𝜇(

− log
1

𝐏𝐫[𝑍1 = 𝑧1 ∣ 𝑍2 = 𝑧2]
+ log

1

𝐏𝐫[𝑍1 = 𝑧1])

= 𝐻 (𝑍1) − 𝐻 (𝑍1 ∣ 𝑍2).

Finally, define the conditional mutual information

𝐼 (𝑋𝑖1 ;𝑋𝑖𝑡 ∣ 𝑋𝑖2 ,… , 𝑋𝑖𝑡−1) = 𝐄
𝑥𝑖2 ,…,𝑥𝑖𝑡−1∼𝐷𝑋

𝐼 (𝑋𝑖1 ;𝑋𝑖𝑡 ∣ 𝑋𝑖2 = 𝑥𝑖2 ,… , 𝑋𝑖𝑡−1 = 𝑥𝑖𝑡−1).
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Our proof now proceeds to bound the conditional mutual information as follows. By Claim 3.7, for any
𝑡 ⩾ 2 ∈ Z and any 𝑖1,… , 𝑖𝑡 ∈ [𝑛],

𝐼 (𝑋𝑖1 ;𝑋𝑖𝑡 ∣ 𝑋𝑖2 ,… , 𝑋𝑖𝑡−1) = 𝐻 (𝑋𝑖1 ∣ 𝑋𝑖2 , 𝑋𝑖2 ,… , 𝑋𝑖𝑡−1) − 𝐻 (𝑋𝑖1 ∣ 𝑋𝑖1 ,… , 𝑋𝑖𝑡−1 , 𝑋𝑖𝑡 ).

In particular, we can average this equality over 𝑡 ∈ {2,… , 𝓁 + 2},

1

𝓁

𝓁+2

∑

𝑡=2

𝐼 (𝑋𝑖1 ;𝑋𝑖𝑡 ∣ 𝑋𝑖2 ,… , 𝑋𝑖𝑡−1) =
1

𝓁

𝓁+2

∑

𝑡=2

(𝐻 (𝑋𝑖1 ∣ 𝑋𝑖2 , 𝑋𝑖2 ,… , 𝑋𝑖𝑡−1) − 𝐻 (𝑋𝑖1 ∣ 𝑋𝑖1 ,… , 𝑋𝑖𝑡−1 , 𝑋𝑖𝑡 ))

=
1

𝓁
(𝐻 (𝑋𝑖1) − 𝐻 (𝑋𝑖1 ∣ 𝑋𝑖1 ,… , 𝑋𝑖𝓁+2)),

where we have used that the sum telescopes. But now, since the entropy is non-negative always, and since
𝐻 (𝑋𝑖1) ⩽ ln 2 for 𝑋𝑖1 taking values in {0, 1},

⩽
ln 2

𝓁
.

Taking the expectation over 𝑖1,… , 𝑖𝑡 ∼ [𝑛],

𝐄
𝑖1,…,𝑖𝓁+2∼[𝑛]

1

𝓁

𝓁+2

∑

𝑡=2

𝐼 (𝑋𝑖1 ;𝑋𝑖𝑡 ∣ 𝑋𝑖2 ,… , 𝑋𝑖𝑡−1) ⩽
ln 2

𝓁
.

Applying the fact that the indices 𝑖1,… , 𝑖𝑡 are exchangeable, we also have

𝐄
𝑖1,…,𝑖𝓁+2∼[𝑛]

1

𝓁

𝓁+2

∑

𝑡=2

𝐼 (𝑋𝑖1 ;𝑋𝑖2 ∣ 𝑋𝑖3 ,… , 𝑋𝑖𝑡 ) ⩽
ln 2

𝓁
.

Hence there must be some 𝑡 ∈ {2,… , 𝓁 + 2} for which

𝐄
𝑖3,…,𝑖𝑡∼[𝑛] [

𝐄
𝑖1,𝑖2∼[𝑛]

𝐼 (𝑋𝑖1 ;𝑋𝑖𝑡 ∣ 𝑋𝑖2 ,… , 𝑋𝑖𝑡−1)]
⩽

ln 2

𝓁
.

Finally, applying Claim 3.5 pointwise with the definition of global correlation gives the result.

4 SoS algorithms via global correlation rounding

Global correlation rounding, the algorithm. If we had access to the degree-𝓁 + 2 moments of a dis-
tribution over solutions to a variational problem, such as densest-𝑚-subgraph, we now have an algorithm
which finds a solution. Then we run the following algorithm:

1. Condition. Sample 𝑖1,… , 𝑖𝓁 ∼ [𝑛], then for each 𝑡 ⩽ 𝓁, sample a value

𝑥𝑖𝑡+1 ∼ Ber(𝐄[𝑋𝑖𝑡+1 ∣ 𝑋𝑖1 = 𝑥𝑖1 ,… , 𝑋𝑖𝑡 = 𝑥𝑖𝑡 ]).

2. Choose a value of 𝑡. For each 𝑡 ∈ {0,… , 𝓁}, check if glob(𝐄[⋅ ∣ 𝑋𝑖1 = 𝑥𝑖1 ,… , 𝑋𝑖𝑡 = 𝑥𝑖𝑡 ]) has global
correlation at most 4 ln 2

𝓁
. If yes, fix this value of 𝑡.

3. Independent rounding. Sample 𝑌𝑖 ∼ Ber(𝐄[𝑋𝑖 ∣ 𝑋𝑖1 = 𝑥𝑖1 ,… , 𝑋𝑖𝑡 = 𝑥𝑖𝑡 ]) independently for each
𝑖 ∈ [𝑛].
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If step 2 fails, and the conditioning did not drop the global correlation, then we can try the whole procedure
again—Markov’s inequality guarantees that the global correlation for the minimizing 𝑡 will exceed 4 ln 2/𝓁
with probability at most 1

2
. Also, in expectation, our objective value can be bounded from below (using

Claim 2.3):

1

|𝐸(𝐺)|
𝐄

𝑌 ,𝑥𝑖1 ,…,𝑥𝑖𝓁

[𝑌
⊤
𝐴𝑌 ] =

1

|𝐸(𝐺)|
𝐄
𝑋
[𝑋 ]

⊤
𝐴 𝐄

𝑋
[𝑋 ] =

1

|𝐸(𝐺)|
𝐄
𝑋
[𝑋

⊤
𝐴𝑋 ] − loc(𝐄

𝑋
, 𝐺),

and we can show that this quantity concentrates (it is a degree-2 polynomial in independent random
variables).

Suppose now that 1
𝑑
𝐴𝐺 has at most 𝑘 eigenvalues of eigenvalue larger than 𝜏, as in the setting of

Lemma 3.2. In fact, the 𝑘-community stochastic block model is one example of such a graph: as we showed
in a prior lecture, when the degree is sufficiently large, the normalized adjacency matrix has 𝑘 eigenvalues
close to 1

𝑘
, and all other eigenvalues 𝑜(1). Applying the dense-(𝑛/𝑘)-subgraph optimization in such a

setting, we would have that our error is bounded by

|
|
|
|

1

|𝐸(𝐺)|
𝐄

𝑌 ,𝑥𝑖1 ,…,𝑥𝑖𝓁

[𝑌
⊤
𝐴𝑌 ] −

1

|𝐸(𝐺)|
𝐄
𝑋
[𝑋

⊤
𝐴𝑋 ]

|
|
|
|
⩽ loc(𝐄𝑋 , 𝐺) ⩽ (1 − 𝑜(1))

√

𝑘 ⋅
4 ln 2

𝓁
+ 𝑜( 1

𝑘
),

where we have used Lemma 3.2 to relate the local and global correlation, and then Lemma 3.3 that the
average variance 𝐕𝐚𝐫(𝐄𝑋 ) is at most 1

𝑘
from our program constraints. Here you can see that we can

choose 𝓁 as large as we want, at the expense of more computation, to get as small an error bound as
we please.

Using pseudodistributions. Of course, we do not necessarily have access to actual moments of a dis-
tribution over solutions to our optimization problem.

Note that the proof of Lemma 3.2 only used that the covariance matrix, Σ𝑋 , is a positive semidefinite
matrix; this is equally true of pseudocovariance matrices when the pseudodistribution has degree at least
2. So at least Lemma 3.2 works for pseudodistributions as well.

Similarly, the proof of Lemma 3.3 can be modified to work for pseudodistributions of degree at least
𝓁 + 2. In order for this to make sense, we need a notion of a conditional pseudodistribution.

Definition 4.1. Let �̃� be a degree-𝑑 pseudodistribution over variables 𝑋1,… , 𝑋𝑛, 𝑍1,… , 𝑍𝑚
2 satisfying the

axioms 𝑋 2
𝑖 = 𝑋𝑖 for all 𝑖 ∈ [𝑛]. Then for any 𝑖 ∈ [𝑛] where �̃�[𝑋𝑖] > 0, we can define the conditional

pseudodistribution �̃�[⋅ ∣ 𝑋𝑖 = 1] of degree-𝓁 − 1 by setting:

�̃�[𝑓 (𝑋, 𝑍) ∣ 𝑋𝑖 = 1] =
�̃�[𝑓 (𝑋, 𝑍)𝑋𝑖]

�̃�[𝑋𝑖]
,

for any polynomial 𝑓 (𝑋, 𝑍) of degree at most 𝑑 − 1. Similarly, if �̃�[𝑋𝑖] < 1 we can define the conditional
pseudodistribution �̃�[⋅ ∣ 𝑋𝑖 = 0] of degree-𝑑 − 1 by setting

�̃�[𝑓 (𝑋, 𝑍) ∣ 𝑋𝑖 = 0] =
�̃�[𝑓 (𝑋, 𝑍)(1 − 𝑋𝑖)]

�̃�[1 − 𝑋𝑖]
.

2The 𝑍𝑗 are meant to emphasize that the notion of conditional distributions does not require Boolean constraints for all of the
variables.
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One may check that if �̃� is a valid pseudoexpectation, then so is the conditional pseudoexpectation
(albeit of one less degree).

Since in the proof of Lemma 3.3 we only used facts about subsets of 𝓁 + 2 variables at a time, the
following fact ensures that so long as we work with a pseudoexpectation �̃� of degree at least 𝓁 + 2, the
conclusion of Lemma 3.3 is valid for �̃� (and conditionings thereof).

Fact 4.2. If �̃� is a degree-𝑑 pseudoexpectation over 𝑋1,… , 𝑋𝑛 satisfying the axioms 𝑋 2
𝑖 = 𝑋𝑖 for all 𝑖 ∈ [𝑛],

then for any 𝑆 ⊂ [𝑛] with |𝑆| ⩽ 𝑑, the pseudomoments {�̃�[𝑥𝛼]}𝛼⊂𝑆 are consistent with some actual distribution
over {0, 1}𝑆 .

Proof. Any event on {0, 1}𝑆 is expressible as a sum of indicators that the variables in 𝑋 take some value
𝑧 ∈ {0, 1}𝑆 . These indicators can be written as degree |𝑆| polynomials in 𝑋 :

𝟏[𝑋𝑆 = 𝑧] = 𝟏[𝑋𝑖 = 𝑧𝑖 ∀𝑖 ∈ 𝑆] = ∏

𝑖∈𝑆

(𝑋𝑖𝑧𝑖 + (1 − 𝑋𝑖)(1 − 𝑧𝑖)).

The booleanity axioms ensure that �̃�[𝟏[𝑋𝑆 = 𝑧]] ⩾ 0, and also that ∑𝑧∈{0,1}𝑆 �̃�[𝟏[𝑋𝑠] = 𝑧]] = 1. Hence, the
moments �̃� are consistent with the distribution on {0, 1}𝑆 that sets 𝐏𝐫[𝑋𝑆 = 𝑧] = �̃�[𝟏[𝑋𝑆 = 𝑧]].

Since the inequalities used in the proof of Lemma 3.3 only use facts about marginal distributions on
𝓁 + 2 variables, and since a degree-𝓁 + 2 pseudodistribution must have valid marginal distributions on
subsets of⩽ 𝓁+2 variables by Fact 4.2, Lemma 3.3 applies to pseudoexpectations as well. Thus, we can use
global correlation rounding as a technique for rounding SoS relaxations of variational problems, trading off
computation time for higher degree 𝓁 + 2 and thus better rounding error for quadratic objectives (scaling
like 𝓁−1/2 for, say, an optimization problem where the objective is defined over edges of an expanding
graph).

5 Conclusion

Bibliographic remarks. Lemma 3.3 was developed independently in several parallel works. On the SoS
side, Barak, Raghavendra and Steurer [BRS11] first suggested the technique of global correlation rounding
as an approach to the Unique Games problem and other constraint satisfaction problems. The technique
was later developed to deal with situations where global constraints are present [RT12], or higher-degree
objective functions are considered [MR17], and some extensions exist even for non-boolean variables
[BKS17]. Another interesting application in the context of statistics is mean-field approximations to Ising
models [JKR19].

Independently, the same lemma was discovered by Montanari [Mon08] as a decomposition result for
probability measures into simpler measures, in the context of the analysis of Belief Propagation. In fact,
the idea of decreasing correlation by conditioning or “pinning” appeared much earlier in the literature of
statistical physics [?]. The idea of decomposing measures into (interesting) mixtures of simpler measures
is a powerful one, and conditioning on discrete-valued random variables is not the only way to do this.
See, for example, [Eld20] if you are interested.

Contact. Comments are welcome at tselil@stanford.edu.
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