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Lecture 4: Clustering well-separated Gaussian mixtures

In this lecture, we will use SoS to develop efficient algorithms for clustering mixtures of Gaussain dis-
tributions, provided they satisfy certain separation assumptions. We’ll also see our first example of an
information-computation tradeoff within the sum-of-squares algorithm, wherein we can obtain improved
clustering guarantees as we increase the degree of our sum-of-squares relaxation. Some bibliographic re-
marks will be deferred to the end.

These notes have not been reviewed with the same scrutiny applied to formal publications. There may be errors.

1 Mixtures of Gaussians with separated means

A distribution  is called a mixture model if it can be decomposed as a convex combination of 𝑘 simpler
distributions 1, … ,𝑘 . That is, we can describe 𝑋 ∼  as being sample by first choosing some 𝑖 ∈ [𝑘]
with probability 𝜆𝑖, then sampling 𝑋 ∼ 𝑖. In this lecture, we will be concerned with the problem of
clustering samples from a mixture model. Formally,

Problem 1.1 (Clustering a mixture model). Let  be a mixture of 𝑘 probability distributions 1, … ,𝑘

over R𝑑 , with mixing weights 𝜆1, … , 𝜆𝑘 . Given independent samples 𝑋1, ⋯ , 𝑋𝑛 ∼ , our goal is to cluster
the samples, partitioning [𝑛] into sets 𝑆1, … , 𝑆𝑘 such that 𝑖 ∈ 𝑆𝑐 iff 𝑋𝑖 ∼ 𝑐 .

The requirement that 𝑖 ∈ 𝑆𝑐 ⟺ 𝑋𝑖 ∼ 𝑐 will often be relaxed, and we’ll settle for getting the partition
right for most samples with decent probability.

Of course, in some cases the clustersmay not be identifiable. We’ll restrict our attention to the following
special case, in the parameter regime where identifiability holds.

Problem 1.2 (Uniformmixture of Δ-separated isotropic Gaussians). This is the special case of Problem 1.1
in which 𝜆𝑏 = 1

𝑘 and 𝑏 =  (𝜇𝑏,1) for all 𝑏 ∈ [𝑘], and furthermore ‖𝜇𝑏 − 𝜇𝑐‖ ⩾ Δ for all 𝑖 ≠ 𝑐 ∈ [𝑘].

Problem 1.2 is known to be information-theoretically possible with poly(𝑑, 𝑘) samples if Δ = Ω(
√
log 𝑘)

[RV17]. We would like to design an algorithm for this problem which uses only 𝑛 = poly(𝑘, 𝑑) samples
and runs in time poly(𝑘, 𝑑) as well.

Clustering vs. parameter estimation. Sometimes, and in particular in the isotropic Gaussian setting,
the problem of clustering is algorithmically equivalent to the problem of parameter estimation for the mix-
ture, where the goal is to estimate 𝜇𝑐 and 𝜆𝑐 for each 𝑐 ∈ [𝑘], given access to the samples.

• If we can cluster the samples, then for each 𝑐 ∈ [𝑘], the subset of samples {𝑋𝑖}𝑖∈𝑆𝑐 are independent
samples from 𝑐 , and so long as |𝑆𝑐 | is large enough, the empirical average 𝑋 𝑐 = 1

|𝑆𝑐 | ∑𝑖∈𝑆𝑐 𝑋𝑖 is a
good approximation to 𝜇𝑐 .

• If we can estimate the means, then we can try to assign each sample to the mean that was most likely
to have generated it; this can be done on a sample-by-sample basis, but a more powerful (and time-
intensive) approach is to create a global assignment of samples to means which takes into account
whether the sample statistics are consistent with what one would expect.
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The implementation of the second point is intentionally a bit vague, because there are a number of ways
that one can do it. In this lecture we will see one way, which uses SoS.

Clustering with the SoS paradigm Perhaps you remember lecture 0, in which we showed how the
SoS paradigm can be used to solve the robust mean estimation problem. Here, we’ll solve the clustering
problem in a similar way, exploiting this connection between mean estimation and clustering.

Our main result in this lecture will be the following:

Theorem 1.3 ([HL18, KSS18]). In the setting of Problem 1.2, there is a universal constant 𝐶 such that for
any even integer 𝑡, a degree-𝑡 SoS algorithm given 𝑛 = (𝑑𝑡𝑘)𝑂(1) samples runs in time 𝑛𝑂(1) and with high
probability returns a partition𝑊1, … ,𝑊𝑘 of [𝑛] such that for all 𝑐 ∈ [𝑘], there exists a true cluster 𝑆𝑏 for which

|𝑊𝑐 ∩ 𝑆𝑏|
𝑛
𝑘

⩾ 1 −
𝑘2𝐶𝑡 𝑡 𝑡/2

Δ𝑡−1 .

In particular, if Δ ⩾ 𝑘𝛾 for 𝛾 > 0 a fixed constant, then a degree-𝑂(1/𝛾) SoS algorithm can estimate
the clusters up to error 1/poly(𝑘) given polynomially many samples (𝑑𝑂(1/𝛾)𝑘𝑂(1) samples) and in polyno-
mial time (𝑑𝑂(1/𝛾2)𝑘𝑂(1/𝛾) time). If Δ = Ω(

√
log 𝑘), then a degree-𝑂(log 𝑘) SoS algorithm can estimate the

means up to error 1/poly(𝑘) given quasi-polynomially many samples in quasi-polynomial time. This is a
information-computation tradeoffwithin SoS; the more computation time we are willing to use, the weaker
our separation assumption (which is a kind of signal-to-noise ratio) becomes, and the fewer samples we
require. One may ask if there is an inherent information-computation gap for this problem; as of very
recently, it seems that the answer is no [LL21].

Prior to the algorithms I describe here, the best known polynomial time algorithm requiredΔ = Ω(𝑘1/4)
[VW02].1 We’ll say more about the history in the bibliographic remarks below.

Remark 1.4. It is noteworthy that their algorithm makes use of higher order (𝑂(1/𝛾)) moments of Gaus-
sian (or sub-gaussian) distributions, whereas previous work only used second moments.

We’ll once again apply the SoS algorithmic paradigm. We’ll establish an SoS proof of identifiability
for the clusters 𝑆1, … , 𝑆𝑘 . Then, we solve an SoS relaxation of the appropriate degree, after which we will
apply a rounding algorithm to recover the true clusters.

2 Identifiability for the true clusters

Recall the setup. We have samples𝑋1, … , 𝑋𝑛 coming from the uniformmixture over (𝜇1,1), … , (𝜇𝑘 ,1),
with the clusters 𝑆1, … , 𝑆𝑘 partitioning [𝑛] so that 𝑆𝑐 = {𝑖 ∈ [𝑛] ∣ 𝑋𝑖 ∼  (𝜇𝑐 ,1)}. In this section we will
show that the clusters 𝑆1, … , 𝑆𝑘 are identifiable from samples with high probability. To begin with, we
describe some conditions that are satisfied by the true clusters with high probability.

Cluster conditions. Denote by 𝜇̄𝑐 the empirical mean of samples in the cluster 𝑆𝑐 . For some small 𝜏 > 0,

(C1) The size of each cluster is close to its expectation:

(1 − 𝜏)
𝑛
𝑘
⩽ |𝑆𝑐 | ⩽ (1 + 𝜏)

𝑛
𝑘
, ∀𝑗 ∈ [𝑘]. (1)

1Concurrent with these results is a comparable algorithmic result due to Diakonikolas et al. [DKS18], but it does not use SoS
so the theorem statement differs.
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(C2) The empirical means are close to population means: ‖𝜇̄𝑐 − 𝜇𝑐‖ ⩽ 𝜏.

(C3) The empirical moments are subgaussian. To be specific, for large 𝑡 ∈ ℕ, we require

1
|𝑆𝑐 |

∑
𝑖∈𝑆𝑐

⟨𝑋𝑖 − 𝜇̄𝑐 , 𝑢⟩𝑡 ⩽ 2𝑡 𝑡/2‖𝑢‖𝑡 , ∀𝑢 ∈ ℝ𝑑 , 𝑗 ∈ [𝑘]. (2)

Conditions (C1) and (C2) make sense: we expect that these quantities will concentrate around their means.
We comment on the moment condition (C3): note if  is a sub-gaussian distribution over ℝ𝑑 with mean
vector 𝜇 and variance-proxy 𝜎 = 1, then by definition of subgaussianity

𝔼𝑋∼ ⟨𝑋 − 𝜇, 𝑢⟩𝑡 ⩽ 𝑡 𝑡/2‖𝑢‖𝑡 , ∀𝑢 ∈ ℝ𝑑 .

Hence, this condition basically enforces that the uniform distribution over the samples in 𝑆𝑐 is subgaussian,
which is what we expect, since the samples in 𝑆𝑐 are sampled from (𝜇𝑐 ,1).

Using standard concentration of measure arguments, one can actually show that the above (C1)-(C3)
are satisfied with high probability, so long as 𝑛 is large enough.2 It turns out these conditions suffice for
identifying the clusters, in the sense that, if some subset 𝑊 ⊂ [𝑛] satisfies (C1) and (C3), then with high
probability there exists a true cluster 𝑆𝑐 such that |𝑊 ∩ 𝑆𝑐 |/|𝑆𝑐 | is close to 1. This idea will be made rigorous
in Lemma 2.2 below. Before that let us encode the above conditions into the polynomial system, which
will be fully exploited in the SoS proof.

System 2.1 (Polynomial constraints on the indicator vector of a cluster). Given samples 𝑋1, … , 𝑋𝑛 ∈ R𝑑

and a small number 𝜏 > 0, the following polynomial system describes the indicator vector 𝑤 ∈ {0, 1}𝑛 of
a cluster 𝑊 , 𝑤𝑖 = 𝟏𝑖∈𝑊 , as well as the mean of the cluster 𝜇 ∈ R𝑑 :

1. 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑛], i.e., 𝑤 is an indicator vector,

2. (1 − 𝜏)𝑛/𝑘 ⩽ ∑𝑖∈[𝑛] 𝑤𝑖 ⩽ (1 + 𝜏)𝑛/𝑘, enforcing that |𝑊 | ≈ 𝑛/𝑘,
3. 𝜇∑𝑖∈[𝑛] 𝑤𝑖 = ∑𝑖∈[𝑛] 𝑤𝑖𝑋𝑖, meaning that 𝜇 is the empirical mean of 𝑊 ,
4. ∑𝑖∈[𝑛] 𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 ⩽ 2𝑡 𝑡/2∑𝑖∈[𝑛] 𝑤𝑖‖𝑢‖𝑡 , ∀𝑢 ∈ ℝ𝑑 , i.e., the empirical moments are subgaussian.

We now show that 2.1 in conjunction with the conditions (C1)-(C3) ensure that 𝑤 is an indicator vector
for some cluster 𝑆𝑐 .

Lemma 2.2 (Lemma 4.20 from [FKP+19]). For 1 ⩽ 𝑗 ⩽ 𝑘, let 𝑎𝑐 be the indicator vector of cluster 𝑆𝑐 , and
set 𝐴 = ∑𝑘

𝑐=1 𝑎𝑐𝑎⊤𝑐 . Suppose (C1)-(C3) are satisfied by the true clusters. Assume 𝑡 is a power of 2, and 𝑤 is a
solution of with 𝜏 ⩽ Δ−𝑡 , then we have

max
𝑐∈[𝑘]

⟨𝑤, 𝑎𝑐⟩ ⩾
𝑛
𝑘 (1 −

2𝑂(𝑡)𝑡 𝑡/2𝑘
Δ𝑡 ) . (3)

Notice that since 𝑤, 𝑎𝑗 are a 0/1 vectors with 𝑛
𝑘 (1 ± 𝜏) nonzero entries, this implies that 𝑤 and 𝑎𝑗 agree

on most of their entries when 𝑘2𝑂(𝑡) ≪ (Δ/
√
𝑡)𝑡 .

Proof. At a high level, we will use the fact that if 𝑤 has significant mass on points in both 𝑆𝑗 and 𝑆𝓁 for
𝑗 ≠ 𝓁, then the uniform distribution over points in the set 𝑊 indicated by 𝑤 cannot be subgaussian in the
direction 𝑢 = 𝜇𝑗−𝜇𝓁

‖𝜇𝑗−𝜇𝓁‖ . To see why, assume for the sake of illustration that 𝑊 has half of its points in 𝑆𝑗 , and
half of its points in 𝑆𝓁, in such a way that its mean is equidistant between 𝜇𝑗 and 𝜇𝓁: 𝜇 = 1

2 (𝜇𝑗 + 𝜇𝓁).
2Also, notice that (C3), restricted to the case 𝑡 = 2, is the same as the covariance condition we used in the identifiability proof

for robust mean estimationin Lecture 0.
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For points 𝑋 in 𝑆𝑗 ,

⟨𝑋 − 𝜇, 𝑢⟩ = ⟨𝑋 − 𝜇𝑗 , 𝜇⟩ + ⟨ 12 (𝜇𝑗 − 𝜇𝓁), 𝑢⟩ ∼ 𝑁(0, 1) + 1
2 ‖𝜇𝑖 − 𝜇𝑗 ‖,

where we’ve used that subtracting 𝜇 is equivalent to subtracting 𝜇𝑗 and adding 1
2 (𝜇𝑗 −𝜇𝓁), and that 𝑋 −𝜇𝑗 ∼

 (0,1) so ⟨𝑋 − 𝜇𝑗 , 𝑢⟩ ∼  (0, 1) for any unit vector 𝑢. So the moments of ⟨𝑋 − 𝜇, 𝑢⟩ will grow at least like
( 12Δ)

𝑡 , which will violate the subgaussianity constraint(4).

Now, we will implement this intuition in our proof. We will show that

∑
𝑗∈[𝑘]

⟨𝑤, 𝑎𝑗⟩
2
⩾

𝑛2

𝑘2
(1 − 𝜀) , (4)

For 𝜀 = 2𝑂(𝑡)𝑡 𝑡/2𝑘/Δ𝑡 . This is enough to imply our conclusion, because if (4) is true,

max
𝑗∈[𝑘]

⟨𝑤, 𝑎𝑗⟩ ⩾
∑𝑗∈[𝑘] ⟨𝑤, 𝑎𝑗⟩

2

∑𝑗∈[𝑘] ⟨𝑤, 𝑎𝑗⟩
⩾

1
∑𝑛

𝑖=1 𝑤𝑖

𝑛2

𝑘2
(1 − 𝜀) ⩾

𝑛
𝑘
(1 − 𝜀)(1 − 𝜏) ⩾

𝑛
𝑘
(1 − 𝜀 − 𝜏), (5)

where in the first inequality we use that max𝑗∈[𝑘]⟨𝑤, 𝑎𝓁⟩ ⋅ ∑𝑗∈[𝑘]⟨𝑤, 𝑎𝓁⟩ ⩾ ∑𝑗∈[𝑘]⟨𝑤, 𝑎𝑗 ⟩2, in the second
inequality we applied (4), and finally we used the constraint that∑𝑤𝑖 = 𝑛

𝑘 (1 ± 𝜏).

Now, we’ll prove (4). First, by applying constraint (2) in,

(
∑
𝑖∈[𝑘]

⟨𝑤, 𝑎𝑖⟩)

2

=
(

𝑛
∑
𝑖=1

𝑤𝑖)

2

⩾ (1 − 𝜏)2
𝑛2

𝑘2
⩾ (1 − 2𝜏)

𝑛2

𝑘2
.

The left-hand side include the left-hand side of (4) as well as cross-terms ⟨𝑤, 𝑎𝑗 ⟩⟨𝑤, 𝑎𝑖⟩, so it will suffice to
show that these cross-terms do not contribute more than 𝑂(𝜀) to the total,

∑
𝑗≠𝓁

⟨𝑤, 𝑎𝑗 ⟩⟨𝑤, 𝑎𝓁⟩ ⩽
𝑛2

𝑘2
𝑂(𝜀). (6)

This is where our intuition about the subgaussianity in the direction 𝑢 = (𝜇𝑗 −𝜇𝓁)/‖𝜇𝑗 −𝜇𝓁‖ comes in. Using
that ‖𝜇𝑗 − 𝜇𝓁‖/Δ ⩾ 1,

⟨𝑤, 𝑎𝑗 ⟩⟨𝑤, 𝑎𝓁⟩ ⩽
‖𝜇𝑗 − 𝜇𝓁‖𝑡

Δ𝑡 ⟨𝑤, 𝑎𝑗 ⟩⟨𝑤, 𝑎𝓁⟩ (7)

=
1
Δ𝑡 ⋅ ⟨𝑤, 𝑎𝑗 ⟩⟨𝑤, 𝑎𝓁⟩⟨𝜇𝑗 − 𝜇𝓁, 𝑢⟩𝑡

=
1
Δ𝑡 ⋅ ⟨𝑤, 𝑎𝑗 ⟩ ⟨𝑤, 𝑎𝓁⟩ (⟨𝜇𝑗 − 𝜇, 𝑢⟩ + ⟨𝜇 − 𝜇𝓁, 𝑢⟩)

𝑡
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(𝑖)
⩽

2𝑡−1

Δ𝑡 ⟨𝑤, 𝑎𝑗 ⟩ ⟨𝑤, 𝑎𝓁⟩ (⟨𝜇𝑗 − 𝜇, 𝑢⟩
𝑡 + ⟨𝜇 − 𝜇𝓁, 𝑢⟩𝑡)

=
2𝑡−1

Δ𝑡 ⟨𝑤, 𝑎𝓁⟩∑
𝑖∈𝑆𝑗

𝑤𝑖 ⋅ ⟨𝜇𝑗 − 𝜇, 𝑢⟩𝑡 +
2𝑡−1

Δ𝑡 ⟨𝑤, 𝑎𝑗 ⟩∑
𝑖∈𝑆𝓁

𝑤𝑖 ⋅ ⟨𝜇𝓁 − 𝜇, 𝑢⟩𝑡 , (8)

where in (𝑖) we used the triangle inequality: (𝑎 + 𝑏)𝑡 ⩽ 2𝑡−1(𝑎𝑡 + 𝑏𝑡). Now, we bound just one of the terms
above (as they are symmetric). We will introduce the samples, twice use subgaussianity:

∑
𝑖∈𝑆𝑗

𝑤𝑖 ⋅ ⟨𝜇𝑗 − 𝜇, 𝑢⟩𝑡 = ∑
𝑖∈𝑆𝑗

𝑤𝑖 ⋅ (⟨𝜇𝑗 − 𝑋𝑖, 𝑢⟩ + ⟨𝑋𝑖 − 𝜇, 𝑢⟩)
𝑡

⩽ 2𝑡−1∑
𝑖∈𝑆𝑗

⟨𝜇𝑗 − 𝑋𝑖, 𝑢⟩𝑡 + 2𝑡−1∑
𝑖∈𝑆𝑗

𝑤𝑖 ⋅ ⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 . (9)

Since by (C2) we have ‖𝜇̄𝑗 − 𝜇𝑗 ‖ ⩽ 𝜏 and by (C3) we have empirical subgaussianity within 𝑆𝑗 , using the
triangle inequality, the first sum we may bound by |𝑆𝑗 | ⋅ (2𝑡 𝑡 𝑡/2 + (2𝜏)𝑡) ⩽ (1 + 𝜏) 𝑛𝑘 (2

𝑡 𝑡 𝑡/2 + (2𝜏)𝑡). For the
second sum, we use the polynomial subgaussianity constraint(4) to conclude that

∑
𝑖∈𝑆𝑗

𝑤𝑖 ⋅ ⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 ⩽ ∑
𝑟∈[𝑘]

∑
𝑖∈𝑆𝑟

𝑤𝑖 ⋅ ⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 ⩽ 2𝑡 𝑡/2 ∑
𝑖∈[𝑛]

𝑤𝑖 ⩽ 2𝑡 𝑡/2
𝑛
𝑘
(1 + 𝜏).

Together, this gives us that the right-hand side of (9) is at most (1 + 𝜏)(2𝑡+1𝑡 𝑡/2 + (2𝜏)𝑡) 𝑛𝑘 , and in turn the
right-hand side of (8) is at most 22𝑡+2Δ−𝑡(⟨𝑤, 𝑎𝑗 ⟩ + ⟨𝑤, 𝑎𝓁⟩) 𝑛𝑘 𝑡

𝑡/2 (we have used that 𝜏 is small).
So putting it all together,

∑
𝑗≠𝓁

⟨𝑤, 𝑎𝑗 ⟩⟨𝑤, 𝑎𝓁⟩ ⩽
22𝑡+2

Δ𝑡
𝑛
𝑘
𝑡 𝑡/2∑

𝑗≠𝓁
⟨𝑤, 𝑎𝓁⟩ + ⟨𝑤, 𝑎𝑗 ⟩ ⩽ 𝑘 ⋅

22𝑡+2

Δ𝑡
𝑛
𝑘
𝑡 𝑡/2 ⋅ 2 ∑

𝑖∈[𝑛]
𝑤𝑖 ⩽

22𝑡+4

Δ𝑡
𝑛2

𝑘
𝑡 𝑡/2 = 𝑂(𝜀)

𝑛2

𝑘2
,

as desired.

3 SoS-izing the proof of identifiability

Lemma 2.2 immediately suggests a procedure for recovering the ground-truth partition 𝑆1, … , 𝑆𝑘: First find
a solution (𝑤, 𝑆) to . According to Lemma 2.2, 𝑊 should be very close to some 𝑆𝑗 . Then we remove the
points in𝑊 and repeat the above procedure for the remaining points, until we obtain 𝑘 clusters. However,
this does not result an efficient algorithm. Following the usual sum-of-squares paradigm, we will instead
solve for a pseudoexpectation 𝔼̃ of sufficiently high degree that satisfies , and round this pseudoexpec-
tation to find a good clustering.

Encoding the subgaussian condition. Note that we cannot directly make use of  to find a degree-
𝑂(𝑡) pseudoexpectation operator in polynomial time, since there are infinitely many inequality constraints
in (4) (one for each 𝑢 ∈ ℝ𝑑). Although in the proof above we only used the 𝑡-th empirical moments are
bounded in the (𝑘2) directions of 𝜇𝑗 − 𝜇𝓁, 𝑗 ≠ 𝓁 ∈ [𝑘], this is still problematic because the 𝜇𝑗 ’s are unknown
parameters that we are trying to estimate, so we don’t have access to them when we are trying to encode
a polynomial system as part of our algorithm. To deal with this issue, we introduce the notion of a “𝑡-
explicitly bounded distribution” (also known as 𝑡-certifiably subgaussian in the literature) below:
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Definition 3.1 (𝑡-explicitly bounded). Let  be a distribution over ℝ𝑑 with mean 𝜇. For 𝜎 > 0 and 𝑡 ∈ ℕ,
we say that  is 𝑡-explicitly bounded with variance proxy 𝜎 if for every even number 𝑠 ⩽ 𝑡, there is a
degree-𝑠 SoS proof of the inequality:

⊢𝑠 𝔼𝑋∼ ⟨𝑋 − 𝜇, 𝑢⟩𝑠 ⩽ (𝜎𝑠)𝑠/2 ‖𝑢‖𝑠 . (10)

Equivalently, the polynomial (𝜎𝑠)𝑠/2 ‖𝑢‖𝑠 − 𝔼𝑋∼ ⟨𝑋 − 𝜇, 𝑢⟩𝑠 can be written as a sum of squares. In this
lecture we will assume 𝜎 = 1 and just call the distribution 𝑡-explicitly bounded, we also assume that 𝑡 is
even to avoid some technical difficulties.

Remark 3.2 (Examples of 𝑡-explicitly bounded distributions). Any normal distribution with identity co-
variance matrix is 𝑡-explicitly bounded for any 𝑡 ∈ ℕ. The rotation of product distributions with bounded
𝑡-th moments are also 𝑡-explicitly bounded.

Moreover, [KSS18] proved that 𝜎-Poincaré distributions are 𝑡-explicitly bounded. We say a distribution
 is 𝜎-Poincaré if it satisfies the following Poincaré inequality: For all differentiable functions 𝑓 ∶ ℝ𝑑 → ℝ,

𝐕𝐚𝐫𝑋∼ [𝑓 (𝑋)] ⩽ 𝜎2𝔼𝑋∼ [‖∇𝑓 (𝑋)‖2] . (11)

Together, these examples comprise many commonly considered distributions.

We’ll briefly describe the proof that for any 𝜁 ∈ R𝑑 , the distribution  (𝜁 ,1) is 𝑡-explicitly bounded.
This boils down to the fact that the following matrix inequality holds for any 𝑠 ⩽ 𝑡/2:

𝐄𝑋∼ (𝜁 ,1)(𝑋 − 𝜁 )⊗𝑠((𝑋 − 𝜁 )⊗𝑠)⊤ ⪯ 𝐄𝑋∼ (0,1)𝑋
⊗𝑠(𝑋⊗𝑠)⊤. (12)

The fact that this implies 𝑡-subgaussian behavior is given by taking the quadratic form of the left- and
right-hand side with 𝑢⊗𝑠 for any unit vector 𝑢 ∈ R𝑑 .

So in order to encode the constraint that∑𝑖 𝑤𝑖(𝑋𝑖 − 𝜇) is 𝑡-subgaussian, we will replace(4) with the
polynomial constraint

∑
𝑖∈[𝑛]

𝑤𝑖((𝑋𝑖 − 𝜇)⊗𝑡/2)((𝑋𝑖 − 𝜇)⊗𝑡/2) = 2 ⋅
(
∑
𝑖∈[𝑛]

𝑤𝑖)
⋅ 𝐄𝑋∼ (0,1)𝑋

⊗𝑡/2(𝑋⊗𝑡/2)⊤ − 𝐵𝐵⊤,

for𝐵 amatrix of indeterminate variables of dimension 𝑑𝑡/2×𝑑𝑡/2. This constraint encodes the 𝑡-subgaussianity
of the 𝑤-cluster 𝑊 as a set of 𝑑𝑂(𝑡) polynomial equalities, and the fact that it is feasible follows from the
fact that each 𝑗 is Gaussian, plus an argument that (12) is satisfied (up to a factor of 2) by the emprical
samples 𝑋𝑖 for 𝑖 ∈ 𝑆𝑗 with high probability so long as 𝑛 = 𝑑Ω(𝑡); this is ensured by the condition 𝑛 = 𝑑Ω(𝑡) in
Theorem 1.3.3 Call this new system of equations ̂. Since ̂ has only 𝑑𝑂(𝑡) + poly(𝑛) constraints, finding
a pseudoexpectation 𝔼̃ which satisfies ̂ takes 𝑑𝑂(𝑡) + poly(𝑛) time.

After introducing the new polynomial system ̂, one can prove a SoS version of Lemma 2.2.

Lemma 3.3 (Lemma 5.3 from [HL18]). Under the same assumptions as Lemma 2.2, let 𝔼̃ be a degree-𝑂(𝑡)
pseudoexpectation that satisfies ̂, then

𝔼̃ ∑
𝑗∈[𝑘]

⟨𝑤, 𝑎𝑗⟩
2
⩾

𝑛2

𝑘2 (
1 −

2𝑂(𝑡)𝑡 𝑡/2𝑘
Δ𝑡 ) . (13)

Sketch of proof. Notice that each inequality that appeared in the proof of (4) in Lemma 2.2 can be SoS-ized
by applying the usual SoS tools, including SoS versions of Cauchy-Schwarz, Hölder’s inequality, and the
triangle inequality.

3See Lemma 4.1 in [HL18].
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4 Rounding the pseudomoments

Finally, we will show that we can use our pseudoexpectation satisfying ̂ to recover the cluster centers.
Here, we will make one final modification to our algorithm: we will search for the pseudoexpectation
satisfying ̂ which minimizes the Frobenius norm ‖𝐄̃𝑤𝑤⊤‖𝐹 . This is a convex objective, so we can solve
for 𝐄̃ in polynomial time.

Lemma 4.1. For the degree-𝑂(𝑡) pseudoexpectation operator 𝐄̃ satisfying ̂ which minimizes ‖𝐄̃𝑤𝑤⊤‖𝐹 , the
matrix 𝑀 = 𝐄̃𝑤𝑤⊤ is close to the block matrix 𝐴 = 1

𝑘 ∑𝑗∈[𝑘] 𝑎𝑖𝑎⊤𝑖 , in the sense that ‖𝐴 − 𝑀‖2𝐹 ⩽ 𝜀‖𝐴‖2𝐹 for

𝜀 = 2𝑂(𝑡)𝑘𝑡 𝑡/2
Δ𝑡 .

Once we prove this claim, the algorithm is easy: 𝐴 is a block matrix whose 𝑘 blocks correspond exactly
to the 𝑘 clusters, and 𝐴 and𝑀 agree on all but an 𝜀-fraction of entries. So𝑀 = 𝐄̃𝑤𝑤⊤ is essentially a block
matrix whose blocks correspond to the clusters, and we can effectively read these off. Finally, to estimate
the mean 𝜇𝑗 , one can take the empirical mean of the samples in 𝑆𝑗 .

Proof of Lemma 4.1. Note that 𝑀 ⪰ 0, and Tr𝑀 = 𝐄̃∑𝑖∈[𝑛] 𝑤2
𝑖 = 𝑛

𝑘 (1 ± 𝜏) by (1) and (2).
Now, we have that

‖𝑀 − 𝐴‖2𝐹 = ‖𝑀‖2𝐹 + ‖𝐴‖2𝐹 − 2⟨𝑀, 𝐴⟩

⩽ 2(‖𝐴‖2𝐹 − ⟨𝑀, 𝐴⟩),

where the inequality follows because 𝐄̃ was chosen to minimize the Frobenius norm of 𝑀 , and 𝐴 corre-
sponds to the (with high probability) feasible choice of 𝐄̃ as the actual expectation of the distribution where
𝑤 is chosen from the uniform mixture over {𝑎𝑗 }𝑗∈[𝑘]. But now, notice that

⟨𝑀, 𝐴⟩ =
1
𝑘
𝐄̃
[
∑
𝑗∈[𝑘]

⟨𝑤, 𝑎𝑗 ⟩2]
⩾

𝑛2

𝑘3
(1 − 𝜀),

for 𝜀 = 2𝑂(𝑡)𝑡 𝑡/2𝑘/Δ𝑡 , where to obtain the inequality we have applied Lemma 3.3, the SoS-version of
Lemma 2.2. The lemma now follows because ‖𝐴‖2𝐹 = (1 ± 𝜏) 𝑛

2

𝑘3 .

5 Conclusion

Putting it all together, we have now seen the proof of Theorem 1.3. We note that the algorithms presented
here can be generalized to the case of non-uniform mixing weights, and to the case when the mixture is
over any1, … ,𝑘 which are 𝑡-explicitly bounded. By results of [KSS18], the property of being 𝑡-explicitly
bounded holds for the large family of distributions which satisfy a Poincaré inequality.

Bibliographic remarks. The algorithm given here is based on the concurrent works of Hopkins-Li and
Kothari-Steinhardt [HL18, KSS18]; here we are borrowing from the presentations of [HL18, FKP+19].

The study of Problem 1.1 can be traced back to Pearson [Pea94]. Prior to theseworks, the best algorithm
for learning Gaussian mixture model with isotropic components required Δ ⩾ 𝑘1/4, via single-linkage
clustering, which is a simple greedy algorithm. In this parameter regime, every pair of samples from the
same cluster are closer to each other in Euclidean distance than are every pair of samples from distinct
clusters (with high probability), so the clusters can be identified using this information about sample second
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moments. The single-linkage clustering algorithm of Vempala and Wang [VW02] was built upon several
pioneering works [Das99, DS07, AK+05].

Standard information-theoretic arguments [RV17] show that it’s possible to identify the cluster means
from 𝑛 = poly(𝑘, 𝑑) samples when Δ is Ω(

√
log 𝑘), but prior to 2018 only exponential-time algorithms

were known. As is evident from this timeline, this computational-to-statistical gap stood open for a long
time until the breakthrough works of Hopkins and Li [HL18], Kothari, Steinhardt and Steurer [KSS18],
and Diakonikolas, Kane, and Stewart [DKS18]. The two former results use SoS algorithms, while the latter
uses a spectral filtering approach and is significantly different from the approach here.

The SoS and pseudoexpectation inequalities needed in the proof of Lemma 3.3 may be found in Section
7 of [HL18] and Appendix A of [BKS14].

These lecture notes are partially based on scribe notes written by Kangjie Zhou.

Contact. Comments are welcome at tselil@stanford.edu.
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