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March 30, 2022

Lecture 1: Implementing sum-of-squares algorithms with

semidefinite programming

In this lecture we introduce semidefinite programming, a powerful class of efficiently-solvable
1
con-

vex programs. We then describe how sum-of-squares algorithms can be implemented with semidefinite

programming. Some bibliographic remarks will be deferred to the end.

These notes have not been reviewed with the same scrutiny applied to formal publications. There may be errors.

1 Recalling the context

Recall that in the previous lecture, we had defined the notion of a degree-𝑘 pseudoexpectation respecting a

set of polynomial axioms/constraints.

Definition 1.1. For a set of polynomial axioms = {𝑓𝑖 = 0}
𝑖∈[𝑀]

∪{𝑔𝑗 ⩾ 0}
𝑗∈[𝐾]

, we say that 𝐄̃ ∶ R[𝑥] → R

is a degree-𝑘 pseudoexpectation satisfying 𝐴 if it is a linear operator with the following properties:

1. Scaling: 𝐄̃[1] = 1

2. Non-negativity of squares: 𝐄̃[ℎ
2
] ⩾ 0 for any polynomial ℎ ∈ R[𝑥] with deg(ℎ) ⩽ 𝑘/2

3. Respecting axioms: 𝐄̃[𝑎𝑓𝑖] = 0 for all 𝑖 ∈ [𝑀] and 𝑎 ∈ R[𝑥] satisfying deg(𝑎𝑓𝑖) ⩽ 𝑘, and 𝐄̃[𝑏
2
𝑔𝑗 ] ⩾ 0

for all 𝑗 ∈ [𝐾] and 𝑏 ∈ R[𝑥] satisfying deg(𝑏
2
𝑔𝑗 ) ⩽ 𝑘.

I had promised you that given a polynomial system 𝐴, there exists an algorithm which runs in time

size(𝐴)
𝑂(𝑘)

for finding a corresponding degree-𝑘 pseudoexpectation. I also promised you that if 𝑝, 𝑞 ∈ R[𝑥]

for 𝑥 ∈ R
𝑁
satisfy 𝑝 ⩾ 𝑞 as a degree-𝑘 sum-of-squares inequality, then there is a time 𝑁

𝑂(𝑘)
that finds

such a sum-of-squares proof. That algorithm is based on a clever application of a fundamental convex

optimization primitive called semidefinite programming.

2 Semidefinite Programs

A semidefinite program (SDP) is a system of equations in a matrix-valued program variable 𝑍 ∈ R
𝑑×𝑑

that

has the following form:

𝑍 ⪰ 0 (1)

⟨𝑍, 𝐴𝑖⟩ = 𝑎𝑖 ∀𝑖 ∈ [𝑚], (2)

⟨𝑍, 𝐵𝑗 ⟩ ⩾ 𝑏𝑗 ∀𝑗 ∈ [𝑚
′
], (3)

where for all 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑚
′
], 𝐴𝑖, 𝐵𝑗 ∈ R

𝑑×𝑑
and 𝑎𝑖, 𝑏𝑗 ∈ R. Often, we might be interested in maximizing

an objective function subject to these constraints; in this case our goal is to determine what is max⟨𝑍, 𝐶⟩

for some 𝐶 ∈ R
𝑑×𝑑

subject to the constraints above.

1
This comes with some asterices, as we will see.
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The constraint (1) requires that 𝑍 be positive semidefinite, which means that it must be symmetric

and have no negative eigenvalues. There are several equivalent characterizations of positive semidefinite

matrices:

𝑍 ⪰ 0 ⟺ ∃𝑉 ∈ R
𝑑×𝑑

s.t. 𝑍 = 𝑉𝑉
⊤

⟺ ∀𝑣 ∈ R
𝑑
, 𝑣

⊤
𝑍𝑣 ⩾ 0.

You can check that these are equivalent.

The set of 𝑍 which satisfy such a system of equations form a convex set. Hence, a semidefinite program

is a convex program, and so if it is feasible we can solve it with one of several off-the-shelf algorithms for

finding solutions to convex programs. Alternatively, if it is not feasible, these algorithms will present a

certificate of infeasibility.

Remark 2.1. One can transform an SDP with inequality constraints into an SDP with only equality con-

straints using the following transformation: for each inequality ⟨𝑍, 𝐵𝑗 ⟩ ⩾ 𝑏𝑗 , one adds an extra “slack

variable” 𝑠𝑗 ⩾ 0, so that ⟨𝑍, 𝐵𝑗 ⟩ − 𝑠𝑗 = 𝑏𝑗 . To implement this as a linear constraint, one adds an extra

dimension to 𝑍 , and the constraint becomes

⟨[

𝑍 0

0 𝑠𝑗]
,
[

𝐵𝑗 0

0 −1]⟩
= 𝑏𝑗 .

Since 𝑠𝑗 is on the diagonal and the SDP requires that the matrix

[

𝑍 0

0 𝑠𝑗]
⪰ 0, we have that 𝑠𝑗 ⩾ 0 is

enforced. This comes at the cost of increasing the size of the SDP.

2.1 Algorithms for solving SDPs

In practice, interior point methods are the method of choice for solving semidefinite programs. Below we

state the current best guarantees for interior-point based SDP solvers; even faster methods are available

for instances of SDP where the constraint matrices are sparse.

Theorem 2.2 (From [JKL
+
20]). There is an interior point method which solves an SDP over matrices of size

𝑑 × 𝑑 and with 𝑚 equality constraints in time 𝑂̃(𝑑2.5 ⋅ 𝑚 +

√

𝑑 ⋅ 𝑚
𝜔
+ 𝑑

𝜔+1/2, where 𝜔 < 2.38 is the matrix
multiplication exponent. The 𝑂̃ hides logarithmic factors in 𝑛 and in 1

𝜀
for 𝜀 the accuracy.

The ellipsoid algorithm is a second method for solving SDPs, or more generally, for determining if a

convex set is nonempty. Though it is not as efficient, the ideas behind the algorithm are easy to explain.

In order to implement the ellipsoid algorithm on a set 𝐾 , we require a separation oracle for 𝐾 :

Definition 2.3 (Separation Oracle). A separation oracle for a convex set 𝐾 ⊂ R
𝑀
is an algorithm that takes

as input a point 𝑥 ∈ R
𝑀
. If 𝑥 ∈ 𝐾 , the algorithm returns true, otherwise if 𝑥 ∉ 𝐾 , the algorithm returns a

separating hyperplane, or a vector 𝑣 ∈ R𝑀
such that ⟨𝑥, 𝑣⟩ < 0 and ⟨𝑦, 𝑣⟩ > 0 for all 𝑦 ∈ 𝐾 .

Every convex set must have a separation oracle, by definition of convexity. The special thing about

SDPs (and other structured convex set) is that there is a separation oracle which uses (𝑚 + 𝑚
′
)𝑑

2
+ 𝑂(𝑑

3
)

arithmetic operations, since each of the constraints in (2), (3) can be checked in 𝑑
2
operations, and the

constraint (1) can be checked by computing the eigenvalues of 𝑍 using Gaussian elimination in 𝑂(𝑑
3
)

operations. Of course, I am being sloppy here because the inputs to the program are real numbers, and

I am ignoring bit complexity issues. Suppose I allow myself log(1/𝛿) bits to represent each number; the

running time is now the number of operations times log
1

𝛿
. If the system is infeasible, but there exists
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some 𝑍
′
which is 𝑜(𝛿)-close to feasible, I might get a false positive. Conversely, if the only feasible 𝑍 are

of magnitude 𝑜(𝛿) (say, 𝑍 =
1

100
𝛿1), then we might get a false negative. I’ll take the liberty of continuing

to ignore this issue, even though this is not 100% kosher. In many of the settings we care about, it is

known that the SDP solutions are well-conditioned, and this problem will not arise. See for example

[O’D17, RW17] for further discussion.

Algorithm 2.4 (The Ellipsoid Algorithm). Input: a separation oracle oracle for a convex set 𝐾 ∈ R
𝑀
, a

maximum radius 𝑅 with the guarantee that 𝐾 ⊂ 𝑅(0), a minimum radius 𝑟 with the guarantee that if 𝐾

is nonempty, then there exists 𝑥 ∈ R
𝑀
with 𝑟(𝑥) ⊂ 𝐾 .

1. Set ellipsoid = 𝑅(0).

2. While vol(ellipsoid) > 𝑟
𝑀
:

(a) Compute the center 𝑥 of ellipsoid, and call oracle(𝑥). If the oracle returns true, return nonempty.

(b) Otherwise, 𝑣 = oracle(𝑥) is a separating hyperplane. Update our bounding set ellipsoid to be

the minimum-volume ellipsoid containing the previous set, excluding the points cut off by the

hyperplane: {𝑦 ∈ ellipsoid ∶ ⟨𝑦, 𝑣⟩ > 0}

3. Return empty.

The idea is that we maintain set, a set which is known to contain 𝐾 . At each step, we choose a point in

set, and we call our oracle on that point. If the oracle says the point is in 𝐾 , then 𝐾 is nonempty. Otherwise,

we use the separating hyperplane to update our bounding set. By choosing the point to always be at the

center of the ellipsoid containing set, we guarantee that whenever we don’t hit 𝐾 , we make progress by

removing an Ω(exp(−
1

𝑀
))-fraction of the set’s volume. In 𝑂(𝑀

2
⋅ log

𝑅

𝑟
) steps, the volume shrinks from

𝑂(𝑅)
𝑀
to 𝑟

𝑀
, and if 𝐾 has volume 𝑟

𝑀
or more, the centroid of the ellipsoid will hit it at or before this step.

I won’t go through the formal analysis, but hopefully the idea is clear. Check out [Goe, LGS88] if you

are interested in the details. The upshot is the following theorem:

Theorem 2.5. The ellipsoid algorithm terminates in 𝑂(𝑀
2
⋅ log

𝑅

𝑟
) steps, each taking 𝑂(1) arithmetic opera-

tions and one oracle call. If 𝐾 contains a ball of radius 𝑟 , the oracle will return nonempty, and if 𝐾 is empty
the oracle will return empty.

Remark 2.6. the special case of semidefinite programming with precision 𝛿, the running time is on the or-

der𝑂(((𝑚+𝑚
′
)𝑑

2
+𝑑

3
)⋅𝑑

6
⋅log

𝑅

𝑟
log

1

𝛿
), which is poly(𝑑, 𝑚) if

𝑅

𝑟
⩽ exp(poly(𝑑, 𝑚)) and

1

𝛿
⩽ exp(poly(𝑑, 𝑚)).

3 Sum-of-squares algorithms as semidefinite programs

3.1 Pseudoexpectations

We will show how to solve for a pseudoexpectation operator using a semidefinite program: Let 𝑘 ∈ N be

even. Notice that by linearity, the value of a degree-𝑘 pseudoexpectation 𝐄̃ on any polynomial 𝑝 of degree

at most 𝑘 can be determined using the value of 𝐄̃[𝑥
𝑆
] for every monomial 𝑥

𝑆
= ∏

𝑖∈𝑆
𝑥𝑖 with |𝑆| ⩽ 𝑘. We

will write a semidefinite program that searches for a feasible set of values {𝐄̃[𝑥
𝑆
]}
𝑆∈[𝑛]

⩽𝑘 .

Our matrix-valued variable 𝑍 will be real symmetric matrix with rows/columns indexed by all subsets

of [𝑛] of size at most 𝑘/2 (including the empty set). For 𝐴, 𝐵 ∈ [𝑛]
⩽𝑘/2

, we will identify 𝑍𝐴,𝐵 = 𝐄̃[𝑥
𝐴
𝑥
𝐵
]. So,

to ensure that 𝐄̃ is well-defined and also to ensure that the scaling property holds, we enforce the following

linear constraints on 𝑍 :

𝑍∅,∅ = 1, and 𝑍𝐴,𝐵 = 𝑍𝑈 ,𝑉 ∀𝐴, 𝐵, 𝑈 , 𝑉 ⊂ [𝑛]
⩽𝑘/2

𝑠.𝑡. 𝐴 ∪ 𝐵 = 𝑈 ∪ 𝑉 ,
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where we are taking the union as multisets.

Let’s assume  = {𝑓𝑖 = 0}
𝑖∈[𝑚]

; that is, let’s only work with equality constraints (we leave inequalities

as an exercise). In order to ensure that the 𝐄̃ we define using 𝑍 respects the axioms , we add linear

constraints to𝑍 . To this end, consider some 𝑓𝑖 ∈ , andwrite it in themonomial basis, 𝑓𝑖(𝑥) = ∑
𝐴∈[𝑛]

𝑘
̂
𝑓𝑖(𝐴)⋅

𝑥
𝐴
. Now, we will construct a constraint matrix 𝐹𝑖 with rows and columns indexed by [𝑛]

⩽𝑘/2
. For each

𝐴 ∈ [𝑛]
𝑘
, choose some arbitrary partition of 𝐴 into two subsets of size at most 𝑘/2 each, say 𝐴 = 𝐴1 ∪ 𝐴2.

Set entry (𝐹𝑖)𝐴1,𝐴2
=

̂
𝑓𝑖(𝐴). One can then check that

⟨𝑍, 𝐹𝑖⟩ = ∑

𝐴∈[𝑛]
⩽𝑘

̂
𝑓𝑖(𝐴) ⋅ 𝑍𝐴1,𝐴2

= ∑

𝐴∈[𝑛]
⩽𝑘

̂
𝑓𝑖(𝐴) ⋅ 𝐄̃[𝑥

𝐴1
𝑥
𝐴2
] = ∑

𝐴∈[𝑛]
⩽𝑘

̂
𝑓𝑖(𝐴) ⋅ 𝐄̃[𝑥

𝐴
] = 𝐄̃[𝑓𝑖],

so we can enforce that 𝐄̃ respects 𝐄̃[𝑓𝑖] = 0 by adding the constraint ⟨𝑍, 𝐹𝑖⟩ = 0. Notice that there may be

many valid choices for 𝐹𝑖, and the symmetries that we have enforced in 𝑍 mean that they are all equivalent.

To ensure that we also have 𝐄̃[𝑐𝑖𝑓𝑖] = 0 for all 𝑐𝑖 ∈ R[𝑥] such that deg(𝑐𝑖𝑓𝑖) ⩽ 𝑘, we can simply repeat

the above for each of the polynomials 𝑥
𝑆
⋅𝑓𝑖 where 𝑆 ⊂ [𝑛] and deg(𝑥

𝑆
𝑓𝑖) ⩽ 𝑘. That is, we add the constraint

𝑥
𝑆
𝑓𝑖 = 0. Since these form a basis for all polynomials 𝑐𝑖𝑓𝑖 of degree at most 𝑘, this is sufficient to ensure

that 𝐄̃ respects .

Claim 3.1. The construction of 𝐄̃ above yields a valid degree-𝑘 pseudoexpectation for the system .

Proof. By construction, linearity and scaling hold for the operator 𝐄̃ that we have defined. Above, we have

argued that 𝐄̃ respects. All that remains is to check the non-negativity of squares; to see that this holds,

consider any polynomial 𝑝 of degree at most 𝑘/2written in the monomial basis, 𝑝(𝑥) = ∑
𝑆∈[𝑛]

⩽𝑘/2 𝑝̂(𝑆) ⋅ 𝑥
𝑆
.

Let 𝑝̂ be the vector of 𝑝’s coefficients, with entries indexed by multisubsets 𝑆 ∈ [𝑛]
⩽𝑘
. We then have that

𝐄̃[𝑝(𝑥)
2
] = 𝑝̂

⊤
𝑍𝑝̂ ⩾ 0,

by the positive semidefiniteness of 𝑍 . This completes the proof.

Running time. Our matrix variable 𝑍 has dimension 𝑛
𝑂(𝑘)

× 𝑛
𝑂(𝑘)

, and 𝑚 ⋅ 𝑛
𝑂(𝑘)

constraints from ,

as well as 𝑛
𝑂(𝑘)

linear constraints of the form 𝑍𝐴,𝐵 = 𝑍𝑈 ,𝑉 which enforce the consistency. So using the

guarantees of the ellipsoid algorithm, our algorithm runs in time poly(𝑚, 𝑛)
𝑘
. When 𝑘 is constant, this is

polynomial time.

3.2 Finding sum-of-squares proofs

In the first lecture, we asserted that one can use (size())
𝑂(𝑘)

-sized SDPs to find a sum-of-squares proof

of degree-𝑘 that 𝑝 ⩾ 𝑞 for 𝑝, 𝑞 ∈ R[𝑥] whenever this is true. We’ll save this for a homework exercise.

We comment as well that the Semidefinite Program above is a feasibility program. One can check (by

applying convex duality) that the SDP’s convex dual is one that searches for a proof of the form

−1 = ∑

𝑡

𝑠
2

𝑡
+ ∑

𝑖∈[𝑚]

𝑐𝑖𝑓𝑖,

with 𝑠𝑡 , 𝑐𝑖 ∈ R[𝑥] satisfying deg(𝑠𝑡) ⩽ 𝑘/2 and deg(𝑐𝑖𝑓𝑖) ⩽ 𝑘 for all 𝑡, 𝑖. This is a sum-of-squares refutation
of the polynomial system ; since the above inequality cannot hold for real 𝑥 if 𝑓𝑖(𝑥) = 0 for all 𝑖, this

shows that no 𝑥 can satisfy all of the constraints in.
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4 Conclusion

Bibliographic remarks. Interior point methods were first applied to Linear Programs by Karmarkar

[Kar84]; the citation given above, [JKL
+
20], holds the current record for the (theoretical) fastest interior

point method for SDPs. The ellipsoid algorithm was discovered by Khachiyan [Kha80]. The algorithm

has a storied history, and we won’t attempt to survey it here. The ellipsoid algorithm now belongs to a

family of methods called cutting plane methods, in which one starts with a set which is known to contain

the target convex set and iteratively cuts down its size. We remark that since then, there have been several

specializex cutting plane methods for semidefinite programs obtaining better running times, the current

record is held by [JLSW20].

Sum-of-squares programming originated in several independent works by Lasserre [Las01], Nesterov

[Nes00], Parrilo [Par00], and Shor [Sho87] near the end of the 20th century. The proofs-to-algorithms

paradigmwas popularized in the algorithms community startingwith thework of Barak, Brandao, Harrow,

Kelner, Steurer and Zhou [BBH
+
12] (see also [OZ13, BKS14, BKS15]).

Thanks to Jay Mardia and Louigi Addario-Berry for helpful suggestions in improving the presentation

of these notes.

Contact. Comments are welcome at tselil@stanford.edu.
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