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Lecture 0: The Sum-of-Squares “proofs to algorithms” paradigm

In this introductory lecture, we will introduce the sum-of-squares (SoS) algorithm and the “proofs to
algorithms” paradigm, using the problem of robust mean estimation as an illustrative example. Some bib-
liographic remarks will be deferred to the end.

These notes have not been reviewed with the same scrutiny applied to formal publications. There may be errors.

1 Context: statistical inference with constrained resources

Statistics is all about drawing conclusions from data, using algorithms. This course will be concerned with
statistical inference, which basically means that we want to draw rigorous, provable conclusions about
the data and its underlying distribution. As mortal, non-omniscient practitioners of statistical inference,
we are resource-constrained. We often have limited access to:
Data/Information: The more data we have, the more information we have, and the better we can un-

derstand the underlying distribution. However, collecting data requires time, money, and care; if,
say, a team of scientists performs an experiment and collects some fixed number of observations, it
is typically not easy for them to later collect more.

Computation: With our data in hand, we will run an algorithm on it to perform inference. We are
limited in the amount of time (and memory) we can use to process the data: computing resources
cost money, and we want to make our inference in a timely manner.

Our goal is to design algorithms that will use our resources, information and computation, as efficiently
as possible; or alternatively, to understand when information- and computation-efficient algorithms are
impossible. Sample-efficient inference is an age-old focus in statistics, and computation-efficient algo-
rithms are the core topic of study in computer science. The focus of this course will be at the confluence
of these concerns. As we will see, the interaction of limited information and computational resources pro-
duces interesting effects that we would remain blind to if we were studying them in isolation. Hence this
more modern perspective is essential to understanding what is possible in statistical inference.

Howdowemeasure information? The best way tomodel information content depends on the setting.
In some situations, it makes sense to parametrize the quantity information in terms of sample complexity,
that is, the number of data points that we see. In other situations, when we only expect to see a single
sample, it makes more sense to parametrize the quantity of information in terms of a signal-to-noise ratio;
we’ll see some examples of this throughout the class.

Throughout much of the course, we’ll be working in the high-dimensional setting, in which we think of
the algorithm’s input, our data, as lying in R𝑑 where 𝑑 → ∞; our goal will be to design algorithms which
perform inference for any 𝑑 ∈ N. At a first pass it makes sense to say that an algorithm is sample-efficient
if the number of samples it requires, 𝑛, is at most polynomial in 𝑑. That is, there exists some fixed universal
constant 𝐶, such that lim𝑑→∞

𝑛
𝑑𝐶 < ∞. We’ll write 𝑛 = 𝑂(𝑑𝐶) for this specific 𝐶, and 𝑛 = poly(𝑑) if there

exists such a 𝐶. Of course, the smaller this 𝐶, the more sample-efficient the algorithm is.
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Even when we think of the dimension 𝑑 as fixed, we may wish to know how many samples we need
to guarantee error rate at most 𝜀 ∈ [0, 1]; leaving this vague for now, we’ll just say that an algorithm is
considered sample-efficient if it uses poly( 1𝜀 ) samples (though we may hope to do better, and at times it
makes sense to tolerate worse).

How do we measure computation? Our input to our algorithm is our data; say, 𝑛 samples 𝑣1,… , 𝑣𝑛 ∈
R

𝑑 . All told, the input has size 𝑚 = 𝑛 ⋅ 𝑑 ⋅ 𝐵, where 𝐵 is the number of bits we used to represent each entry
of the {𝑣𝑖}𝑖∈[𝑛]. It’s reasonable that an algorithm should run in time proportional to the amount of input
data, and we measure algorithmic efficiency asymptotically according to the size of the input. We’ll say
that an algorithm is time-efficient if it terminates in time poly(𝑚). As above, we may sometimes wish to
do even better than polynomial time; it is much better to have linear time (𝑂(𝑚) time) algorithms.

Sometimes, we also think of space or memory as a computational resource. But mostly we’ll be con-
cernedwith time-efficiency, sowhenwe say “computational efficiency”wemean time-efficiency by default.

2 Proofs-to-Algorithms

The main topic of this course is an algorithmic methodology that we call sum-of-squares algorithms. The
incredible thing about sum-of-squares algorithms is that they allow us to take a restricted class of mathe-
matical proofs (called sum-of-squares proofs) about properties of our input, and automatically transform
these proofs into algorithms. Rather than trying to define this rigorously from the start, let’s illustrate it
with an example. We consider the well-studied problem of robust mean estimation. Since our focus will
be on the algorithmic methodology, I’ll save comments on the history of this problem for later.

Problem 2.1 (Robust Mean Estimation). Let 𝐷 be a distribution over R𝑑 with mean 𝑢, covariance Σ ⪯ 1,
and bounded 4th moments. Let 𝜀 > 0 be a real number. Our goal is to estimate the mean 𝑢 from 𝜀-corrupted
samples: we observe 𝑣1,… , 𝑣𝑚 ∈ R𝑑 , a (1− 𝜀)-fraction sampled iid from 𝐷 and the remaining 𝜀-fraction are
adversarially-chosen vectors inR𝑑 .

There are certainly situations where this problem is impossible, for example, if 𝜀 = 1. So, when is esti-
mating the mean 𝑢 possible? We will give a proof of identifiability, showing that if 𝑛 = poly(𝑑) sufficiently
large, then with high probability given samples 𝑣1,… , 𝑣𝑛 it is possible to estimate 𝑢 in ‖ ⋅ ‖2 with error at
most 𝑂(

√
𝜀). More specifically, we’ll show:

Lemma 2.2. If 𝑛 = poly(𝑑) sufficiently large, and if 𝑆 ⊂ [𝑛] of size |𝑆| = (1−𝜀)𝑛 satisfies, for 𝑢𝑆 ∶= 1
|𝑆| ∑𝑖∈𝑆 𝑣𝑖,

1
|𝑆|

∑
𝑖∈𝑆

(𝑣𝑖 − 𝑢𝑆)(𝑣𝑖 − 𝑢𝑆)⊤ ⪯ 2 ⋅ 1,

then with high probability over the samples, ‖𝑢𝑆 − 𝑢‖ ⩽ 𝑂(
√
𝜀).

Further, with high probability the uncorrupted samples form such a set 𝑆. So this lemma automatically
implies an estimation algorithm: perform a brute force search over subsets of [𝑛] until you find a set
satisfying this condition, then use its empirical mean as an estimate of 𝑢. But this algorithm runs in time
⩾ ( 𝑛

(1−𝜀)𝑛), which is exponential in 𝑛 and thus inefficient.
However, because the proof of Lemma 2.2 itself will be a low-degree sum-of-squares proof, it will

automatically give us an efficient algorithm, based on solving a semidefinite program. This is amazing!
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2.1 Sum-of-squares proofs

We’ll now define sum-of-squares proofs.

Definition 2.3. For multivariate polynomials 𝑝, 𝑞 ∈ R[𝑥] in variables 𝑥 ∈ R𝑁 , we say that 𝑝 ⩾ 𝑞 is a
degree-𝑘 sum-of-squares inequality if there exist polynomials 𝑠1, 𝑠2,… ∈ R[𝑥] of degree at most 𝑘/2 such
that

𝑝 − 𝑞 = ∑
𝑡
𝑠2𝑡 . (1)

In such a case, we say that 𝑝 ⩾ 𝑞 has a degree-𝑘 sum-of-squares proof.
We say that there is a degree-𝑘 sum of squares proof of 𝑝 ⩾ 𝑞 modulo the axioms 𝐴 = {𝑓𝑖 = 0}𝑖∈[𝑀]∪{𝑔𝑗 ⩾

0}𝑗∈[𝐾 ] if there exist polynomials 𝑎1,… , 𝑎𝑀 , 𝑏1,… , 𝑏𝐾 , 𝑠1,… ∈ R[𝑥] such that deg(𝑎𝑖𝑓𝑖) ⩽ 𝑘 for all 𝑖 ∈ [𝑀]
and deg(𝑏2𝑗 𝑔𝑗 ) ⩽ 𝑘, for all 𝑗 ∈ [𝐾 ], deg(𝑠2𝑡 ) ⩽ 𝑘 for all 𝑡 ⩾ 1, and

𝑝 − 𝑞 = ∑
𝑡
𝑠2𝑡 +

𝑀
∑
𝑖=1

𝑎𝑖𝑓𝑖 +
𝐾
∑
𝑗=1

𝑏2𝑗 𝑔𝑗 . (2)

If there is a degree-𝑘 sum-of-squares proof that 𝑝 ⩾ 𝑞 modulo the axioms 𝐴, we write 𝐴 ⊢𝑘 𝑝 ⩾ 𝑞.

Notice that if we can write 𝑝 − 𝑞 as in (1), then this indeed constitutes a proof that 𝑝 ⩾ 𝑞 on any real
input. The same is true for (2), assuming that all of the axioms in 𝐴 hold.

You may ask, what kind of statements have sum-of-squares proofs? First, we’ll give some meta-
statements, and then some examples.

Theorem 2.4. If 𝑝, 𝑞 ∈ R[𝑥] for 𝑥 ∈ R (that is, 𝑁 = 1) and 𝑝 ⩾ 𝑞 then there is always a sum-of-squares
proof of this fact of degree at most max(deg(𝑝), deg(𝑞)).

What about 𝑁 > 1? For 𝑁 > 1, there are 𝑝, 𝑞 such that 𝑝 ⩾ 𝑞 but there is no sum-of-squares proof
of this fact. However, the following theorem gives an alternative result; the question goes back to David
Hilbert’s 17th problem, and its resolution is due to Artin, Krivine, and Stengle.

Theorem 2.5 (Positivestellensatz). Any non-negative (modulo the axioms 𝐴) polynomial can be written as
a sum of squares of rational functions.

In most of the settings that we consider, where we have additional constraints on 𝑥 such as ‖𝑥‖2 ⩽ 1
or 𝑥2𝑖 = 𝑥𝑖, every true polynomial inequality has a sum-of-squares proof (of degree as large as poly(𝑁 )).

Examples of sum-of-squares proofs

Now we will give some examples of well-known facts that have low-degree sum-of-squares proofs.

Claim 2.6 (SoS Cauchy-Schwarz). Let 𝑎, 𝑏 be vector-valued polynomials of degree at most 𝑘. Then for any
𝜀 > 0,

⊢2𝑘 ⟨𝑎, 𝑏⟩ ⩽
𝜀
2
‖𝑎‖2 +

1
2𝜀
‖𝑏‖2

and
⊢4𝑘 ⟨𝑎, 𝑏⟩2 ⩽ ‖𝑎‖2‖𝑏‖2.

Proof. We can write ⟨𝑎, 𝑏⟩+ 1
2 ‖
√
𝜀𝑎− 1√

𝜀 𝑏‖
2 = 𝜀

2 ‖𝑎‖
2+ 1

2𝜀 ‖𝑏‖
2, and ⟨𝑎, 𝑏⟩2 = ‖𝑎‖2‖𝑏‖2− 1

2 (∑𝑖,𝑗 (𝑎𝑖𝑏𝑗 − 𝑎𝑗𝑏𝑖)2).
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Claim 2.7 (SoS operator norm). Let 𝑦 ∈ R𝑛, 𝑀 ∈ R𝑛×𝑛, and 𝐵 ∈ R𝑛×𝑘 . Then

{𝑀 = 𝜆1 − 𝐵𝐵⊤} ⊢𝑘 𝑦⊤𝑀𝑦 ⩽ 𝜆‖𝑦‖2,

for 𝑘 ⩾ deg(𝑦⊤𝑀𝑦 + 𝑦⊤𝐵𝐵⊤𝑦).

Proof. Our axioms imply that 𝑦⊤𝑀𝑦 = 𝜆𝑦⊤1𝑦−𝑦⊤𝐵𝐵⊤𝑦 = 𝜆‖𝑦‖2− ‖𝐵⊤𝑦‖2, which is a sum-of-squares proof
that 𝑦⊤𝑀𝑦 ⩽ 𝜆‖𝑦‖2.

2.2 Pseudoexpectations

The connection between sum-of-squares proofs and algorithms derives from the fact that if 𝐴 ⊢𝑘 𝑝 ⩾ 𝑞,1

and 𝐴, 𝑝, 𝑞 have at most 𝑁 variables and 𝑀 + 𝐾 axioms, then there is an algorithm running in time
(𝑀𝑁𝐾)𝑂(𝑘), which solves a semidefinite program to find such a proof. We’ll prove this in the next class.

Here, we’ll use a consequence of this statement (derived via convex duality). We’ll need the following
definition:

Definition 2.8. For a set of polynomial axioms 𝐴 = {𝑓𝑖 = 0}𝑖∈[𝑀]∪{𝑔𝑗 ⩾ 0}𝑗∈[𝐾 ], we say that �̃� ∶ R[𝑥] → R

is a degree-𝑘 pseudoexpectation satisfying 𝐴 if it is a linear operator with the following properties:
1. Scaling: �̃�[1] = 1
2. Non-negativity of squares: �̃�[ℎ2] ⩾ 0 for any polynomial ℎ ∈ R[𝑥] with deg(ℎ) ⩽ 𝑘/2
3. Respecting axioms: �̃�[𝑎𝑓𝑖] = 0 for all 𝑖 ∈ [𝑀] and 𝑎 ∈ R[𝑥] satisfying deg(𝑎𝑓𝑖) ⩽ 𝑘, and �̃�[𝑏2𝑔𝑗 ] ⩾ 0

for all 𝑗 ∈ [𝐾 ] and 𝑏 ∈ R[𝑥] satisfying deg(𝑏2𝑔𝑗 ) ⩽ 𝑘.

The pseudoexpectation operator is a relaxation of an expectation operator for some distributions over
solutions 𝑥 to the polynomial system of equations defined by 𝐴. We have no guarantee that �̃� corresponds
to an actual distribution over solutions; on the other hand, it behaves a little bit like the expectation of a
distribution. In particular, if 𝐴 ⊢𝑘 𝑝 ⩾ 𝑞, then we must also have �̃�𝑝 ⩾ �̃�𝑞.

The following theorem we will prove in the next class:

Theorem 2.9. Let 𝐴 = {𝑓𝑖 = 0}𝑖∈[𝑀] ∪ {𝑔𝑗 ⩾ 0}𝑗∈[𝐾 ] be a set of polynomial axioms with 𝑓𝑖, 𝑔𝑗 ∈ R[𝑥] and
𝑥 ∈ R𝑁 . If there exists a degree-𝑘 pseudoexpectation satisfying 𝐴, then there is an (𝑀𝐾𝑁 )𝑂(𝑘) time algorithm
that finds it.

Notice it’s enough for the algorithm to print out the value of �̃�[𝑥𝛼] for all 𝑁 𝑘 degree-𝑘 monomials 𝑥𝛼 ;
by linearity we can know its value on the rest.

2.3 A sum-of-squares proof of identifiability for robust mean estimation

Now, we set up a system of polynomial equations to solve robust mean estimation. Recall that we observe
𝑣1,… , 𝑣𝑛 ∈ R𝑑 , with the guarantee that (1 − 𝜀)𝑛 are drawn from 𝐷 and 𝜀𝑛 may be arbitrary. We can think
of this as a two-step process: first, 𝑛 “pure” samples 𝑧1,… , 𝑧𝑛 are sampled independently from 𝐷, and we
view the “corrupted” copies 𝑣1,… , 𝑣𝑛, with the guarantee that for (1 − 𝜀)𝑛 coordinates 𝑖 ∈ [𝑛], 𝑣𝑖 = 𝑧𝑖.

We’ll take the following axioms, where the goal is that the solution to the system of polynomial equa-
tions identifies the uncorrupted samples.

1Technically we also require that the sum-of-squares proof that 𝑝 ⩾ 𝑞 mod 𝐴 has polynomial bit complexity; we’ll brush this
under the rug here
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Problem 2.10 (Polynomial system for robust mean estimation). We define a polynomial system in the
following variables: 𝑍1,… , 𝑍𝑛 ∈ R𝑑 represent the vectors 𝑧1,… , 𝑧𝑛; 𝑊1,… , 𝑊𝑛 ∈ R with 𝑊𝑖 representing
the indicator that 𝑧𝑖 = 𝑣𝑖 (or that 𝑖 ∈ 𝑆 for the 𝑆 of Lemma 2.2); 𝐵 ∈ R𝑑×𝑑 is a matrix of “slack” variables.
We include the following polynomial constraints:

𝑊 2
𝑖 = 𝑊𝑖 ∀ 𝑖 ∈ [𝑛] (3)

𝑚
∑
𝑖=1

𝑊𝑖 = (1 − 𝜀)𝑛 (4)

𝑊𝑖(𝑍𝑖 − 𝑣𝑖) = 0 ∀ 𝑖 ∈ [𝑛] (5)

𝑍 =
1
𝑛

𝑛
∑
𝑖=1

𝑍𝑖,
1
𝑛

𝑛
∑
𝑖=1

(𝑍𝑖 − 𝑍)(𝑍𝑖 − 𝑍)⊤ = 21 − 𝐵𝐵⊤. (6)

The constraints from (3) enforce that the 𝑊𝑖 are 0/1 valued. The constraints from (4) and (5) together
ensure that (1 − 𝜀)𝑛 of the 𝑍𝑖 are equal to the corresponding 𝑣𝑖. Finally, the constraint (6) ensures that
the covariance matrix of the 𝑍𝑖 is bounded by 21. We have normalized the averages by 𝑛 rather than by
|𝑆| = (1 − 𝜀)𝑛; this will be more convenient to work with. You can check that this is not a big deal for the
final result, since this is a (1 ± 𝑂(𝜀)) difference.

We’ll show the following:

Lemma 2.11. Let 𝑧 = 1
𝑛 ∑

𝑛
𝑖=1 𝑧𝑖 be the empirical mean of the uncorrupted samples. So long as 𝑛 = poly(𝑑),

with high probability over 𝑣1,… , 𝑣𝑛,

 ⊢6 ‖𝑍 − 𝑧‖4 ⩽ 𝑂(𝜀) ⋅ ‖𝑍 − 𝑧‖2.

We’ll prove the lemma shortly; first, we make a couple of observations.

Identifiability. From this lemma, we get Lemma 2.2 immediately: in any solution to the polynomial
system, the vectors 𝑣𝑖 for which 𝑊𝑖 = 1 form the set 𝑆 have the property that ‖𝑧 − 𝑍‖ ⩽ 𝑂(

√
𝜀). So long

as 𝑛 = poly(𝑑) is large enough, with high probability ‖𝑧 − 𝑢‖ ⩽
√
𝜀, and the conclusion follows from the

triangle inequality.

Proofs-to-algorithms. Because this is a low-degree sum-of-squares proof, we also automatically get a
sum-of-squares algorithm! In polynomial time, we solve for a degree-6 pseudoexpectation operator which
satisfies , as guaranteed by Theorem 2.9. From Lemma 2.11, we are guaranteed that �̃�[‖𝑍 − 𝑧‖4] ⩽
𝑂(𝜀) ⋅ �̃�[‖𝑍 − 𝑧‖2]. Then, by the non-negativity of �̃� applied to squares,

0 ⩽ �̃� [(‖𝑧 − 𝑍‖2 − �̃�[‖𝑧 − 𝑍‖2])
2
] = �̃�[‖𝑧 − 𝑍‖4] − �̃�[‖𝑧 − 𝑍‖2]2 ⩽ �̃�[‖𝑧 − 𝑍‖2](𝑂(𝜀) − �̃�[‖𝑧 − 𝑍‖2]),

which implies that �̃�[‖𝑧 − 𝑍‖2] ⩽ 𝑂(𝜀). By a similar logic, ‖𝑧 − �̃�[𝑍]‖2 ⩽ 𝑂(𝜀). So the quantity �̃�[𝑍]
computed by our algorithm is a good estimate for 𝑧.

We’ll now finally prove Lemma 2.11. The proof will be dull—how could it not be, when the point is
that every inequality is certified as a sum-of-squares? The beauty is that, once we know that this simple,
dull proof exists, we also know that a computer can find it and find a corresponding �̃�.
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Proof. Let 𝑧1,… , 𝑧𝑛 be the uncorrupted samples from 𝐷, such that 𝑣𝑖 = 𝑧𝑖 for a (1 − 𝜀) fraction of 𝑖 ∈ [𝑛].
Recall 𝑍 = 1

𝑛 ∑
𝑛
𝑖=1 𝑍𝑖, and define Σ𝑍 = 1

𝑛 ∑
𝑛
𝑖=1(𝑍𝑖 − 𝑍)(𝑍𝑖 − 𝑍)⊤. Recall also that 𝑊𝑖 is our variable which

represents 𝟏𝑍𝑖=𝑣𝑖 . Let 𝑧 = 1
𝑛 ∑

𝑛
𝑖=1 𝑧𝑖, and since we have chosen 𝑛 large enough, with high probability the

empirical covariance of the uncorrupted samples concentrates, so that Σ𝑧 = 𝐂𝐨𝐯(𝑧1,… , 𝑧𝑛) ⪯ 21. We have
that

‖𝑧 − 𝑍‖4 = ⟨𝑧 − 𝑍, 𝑧 − 𝑍⟩2 =
(
1
𝑛

𝑛
∑
𝑖=1

(1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖)⟨𝑧𝑖 − 𝑍𝑖, 𝑧 − 𝑍⟩ +
1
𝑛

𝑛
∑
𝑖=1

𝑊𝑖𝟏𝑧𝑖=𝑣𝑖⟨𝑧𝑖 − 𝑍𝑖, 𝑧 − 𝑍⟩
)

2

.

Since we have enforced the constraint 𝑊𝑖(𝑣𝑖 − 𝑍𝑖) = 0 in (5), the second term is 0. So we have

=
(
1
𝑛

𝑛
∑
𝑖=1

(1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖)⟨𝑧𝑖 − 𝑍𝑖, 𝑧 − 𝑍⟩
)

2

Now, we apply the ⊢ ⟨𝑝, 𝑞⟩2 ⩽ ‖𝑝‖2‖𝑞‖2 version of degree-6 SoS Cauchy-Schwarz (Claim 2.6),

⩽
(
1
𝑛

𝑛
∑
𝑖=1

(1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖)
2

)(
1
𝑛

𝑛
∑
𝑖=1

⟨𝑧𝑖 − 𝑍𝑖, 𝑧 − 𝑍⟩2
)

If 𝐴 ⩽ 𝐵 is an SoS inequality, then so is 𝐴𝑠 ⩽ 𝐵𝑠 for any sum-of-squares 𝑠, since 𝐵𝑠 − 𝐴𝑠 = (𝐵 − 𝐴)𝑠. So,
we can bound the parenthesized terms one at a time. For the first term, notice that (3) ⊢2 (1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖)2 =
1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖 .2 Also, (4), (3) ⊢1

1
𝑛 ∑

𝑛
𝑖=1(1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖) ⩽ 2𝜀.3 So (3), (4) ⊢ 1

𝑚 ∑𝑛
𝑖=1(1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖)2 ⩽ 2𝜀.

We now bound the second term. Using the shorthand 𝑏 = 𝑧 − 𝑍 , we expand

⟨𝑧𝑖 − 𝑍𝑖, 𝑏⟩ = ⟨𝑧𝑖 − 𝑍𝑖 + 𝑏 − 𝑏, 𝑏⟩ = ⟨𝑧𝑖 − 𝑧, 𝑏⟩ − ⟨𝑍𝑖 − 𝑍, 𝑏⟩ + ‖𝑏‖2,

and now applying these manipulations,

1
𝑛

𝑛
∑
𝑖=1

⟨𝑧𝑖 − 𝑍𝑖, 𝑧 − 𝑍⟩2 =
1
𝑛

𝑛
∑
𝑖=1

(⟨𝑧𝑖 − 𝑧, 𝑏⟩ − ⟨𝑍𝑖 − 𝑍, 𝑏⟩ + ‖𝑏‖2)
2

⩽
1
𝑛
10
3

𝑛
∑
𝑖=1

⟨𝑧𝑖 − 𝑧, 𝑏⟩2 + ⟨𝑍𝑖 − 𝑍, 𝑏⟩2 + ‖𝑏‖4,

Where we have used that for real 𝐴, 𝐵, 𝐶, (𝐴+𝐵)2 ⩽ 2𝐴2 +2𝐵2 (since 2𝐴2 +2𝐵2 = (𝐴+𝐵)2 + (𝐴−𝐵)2, and
by similar reasoning (𝐴+𝐵+𝐶)2 ⩽ 2𝐴2 +4𝐵2 +4𝐶2, which can be improved to a uniform 10

3 by averaging
over permutations of 𝐴, 𝐵, 𝐶). Proceeding, we can re-write the above in terms of quadratic forms with the
empirical covariance matrices of the 𝑍𝑖 and 𝑧𝑖,

=
10
3 (𝑏⊤Σ𝑧𝑏 + 𝑏⊤Σ𝑍𝑏 + ‖𝑏‖4) ,

And applying Claim 2.7 we have that (6) ⊢4 𝑏⊤Σ𝑍𝑏 ⩽ 2‖𝑏‖2, 𝑏⊤Σ𝑧𝑏 ⩽ 2‖𝑏‖2 by the concentration of the
spectrum of Σ𝑧 , so we conclude that

⩽
10
3
(4‖𝑏‖2 + ‖𝑏‖4).

So, putting everything together, we conclude that ‖𝑧 − 𝑍‖4 ⩽ 𝑂(𝜀) ⋅ (4‖𝑧 − 𝑍‖2 + ‖𝑧 − 𝑍‖4) has a degree-6
sum-of-squares proof, as desired.

2Since (1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖 )2 = 1 − 2𝑊𝑖𝟏𝑧𝑖=𝑣𝑖 +𝑊 2
𝑖 𝟏2𝑧𝑖=𝑣𝑖 = 1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖 .

3Since 1 −𝑊𝑖𝟏𝑧𝑖=𝑣𝑖 = 1 −𝑊𝑖 +𝑊𝑖𝟏𝑧𝑖≠𝑣𝑖 , (4) ⊢1 ∑𝑖 𝑊𝑖 = 𝑛(1 − 𝜀) and (3) ⊢2 𝑊𝑖𝟏𝑧𝑖≠𝑣𝑖 ⩽ 𝟏𝑧𝑖≠𝑣𝑖 .
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3 Conclusion

We have seen how a proof of identifiability which is captured by low-degree sum-of-squares proofs can au-
tomatically yield a polynomial time algorithm via sum-of-squares relaxations. This is the “sum-of-squares
algorithmic paradigm” after which the course is named. The theme of proofs-to-algorithms will show up
again and again throughout the course.

Bibliographic remarks. Sum-of-squares algorithms originated in several independentworks by Lasserre
[Las01], Nesterov [Nes00], Parrilo [Par00], and Shor [Sho87] near the end of the 20th century. The proofs-
to-algorithms paradigm was popularized in the algorithms community starting with the work of Barak,
Brandao, Harrow, Kelner, Steurer and Zhou [BBH+12] (see also [OZ13, BKS14, BKS15]). The proof of the
SoS Cauchy-Schwarz inequality ⟨𝑎, 𝑏⟩2 ⩽ ‖𝑎‖2‖𝑏‖2 is taken from Ma-Shi-Steurer [MSS16], Lemma A.1.

The problem of estimating the mean under adversarial corruptions goes back as far as the 1960’s (e.g.
[Ans60, Tuk60]). The first polynomial-time algorithm with dimension-independent error was given by
Diakonikolas, Kamath, Kane, Li, Moitra, and Stewart [DKK+19] (see also [LRV16]); their convex program-
ming approach bears some similarity to the SoS program that we use here, but the analysis is more compli-
cated. Since then there have been numerous works on this topic, including the time- and sample-efficient
algorithms [DL19, DHL19, CDGS20]. See e.g. [Li18] for a more complete survey. The presentation in
this lecture was based on the works of Hopkins-Li [HL18] and Kothari-Steinhardt-Steurer [KSS18], with
invaluable advice from Sam B. Hopkins. Thanks also to Sam for suggesting robust mean estimation as a
topic for the introductory lecture.

Thanks to Jay Mardia and Louigi Addario-Berry for helpful suggestions in improving the presentation
of these notes.

Contact. Comments are welcome at tselil@stanford.edu.
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